High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Choose the correct simplification of [tex]\((4x-3)(3x^2-4x-3)\)[/tex].

A. [tex]\(12x^3 + 25x^2 + 9\)[/tex]

B. [tex]\(12x^3 - 25x^2 - 9\)[/tex]

C. [tex]\(12x^3 + 25x^2 - 9\)[/tex]

D. [tex]\(12x^3 - 25x^2 + 9\)[/tex]

Answer :

Sure! Let's simplify the expression [tex]\((4x - 3)(3x^2 - 4x - 3)\)[/tex] step-by-step:

1. Distribute [tex]\((4x - 3)\)[/tex] across each term in [tex]\((3x^2 - 4x - 3)\)[/tex]. This means we'll multiply [tex]\(4x\)[/tex] by each term in the second polynomial, and then do the same with [tex]\(-3\)[/tex].

2. Multiply [tex]\(4x\)[/tex] by each of the terms in [tex]\((3x^2 - 4x - 3)\)[/tex]:

[tex]\[
4x \cdot 3x^2 = 12x^3
\][/tex]

[tex]\[
4x \cdot (-4x) = -16x^2
\][/tex]

[tex]\[
4x \cdot (-3) = -12x
\][/tex]

3. Multiply [tex]\(-3\)[/tex] by each of the terms in [tex]\((3x^2 - 4x - 3)\)[/tex]:

[tex]\[
-3 \cdot 3x^2 = -9x^2
\][/tex]

[tex]\[
-3 \cdot (-4x) = 12x
\][/tex]

[tex]\[
-3 \cdot (-3) = 9
\][/tex]

4. Combine all these terms together:

[tex]\[
12x^3 - 16x^2 - 12x - 9x^2 + 12x + 9
\][/tex]

5. Combine like terms:

- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(-16x^2 - 9x^2 = -25x^2\)[/tex]

- Combine the [tex]\(x\)[/tex] terms: [tex]\(-12x + 12x = 0\)[/tex]

6. Write the final simplified expression:

[tex]\[
12x^3 - 25x^2 + 9
\][/tex]

Therefore, the correct simplification of [tex]\((4x - 3)(3x^2 - 4x - 3)\)[/tex] is [tex]\(\boxed{12x^3 - 25x^2 + 9}\)[/tex].