Answer :
Certainly! Let's go through the steps to solve the given equation:
The equation starts as:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
Karissa has already simplified this equation as follows:
1. Expand the left side: [tex]\( \frac{1}{2}(x-14) = \frac{1}{2}x - \frac{1}{2} \times 14 = \frac{1}{2}x - 7 \)[/tex]
2. Expand the right side:
- First, distribute the negative sign: [tex]\( -(x-4) = -x + 4 \)[/tex]
- Then: [tex]\( \frac{1}{2}x - x + 4 \)[/tex]
Now the equation looks like:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Next, she combined like terms:
- On the left side: [tex]\( -7 + 11 = 4 \)[/tex] which gives us [tex]\( \frac{1}{2}x + 4 \)[/tex]
- The right side simplifies as it is.
The equation is now:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Karissa subtracted 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
To solve [tex]\( \frac{1}{2}x = -\frac{1}{2}x \)[/tex], we add [tex]\( \frac{1}{2}x \)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].
The equation starts as:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
Karissa has already simplified this equation as follows:
1. Expand the left side: [tex]\( \frac{1}{2}(x-14) = \frac{1}{2}x - \frac{1}{2} \times 14 = \frac{1}{2}x - 7 \)[/tex]
2. Expand the right side:
- First, distribute the negative sign: [tex]\( -(x-4) = -x + 4 \)[/tex]
- Then: [tex]\( \frac{1}{2}x - x + 4 \)[/tex]
Now the equation looks like:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Next, she combined like terms:
- On the left side: [tex]\( -7 + 11 = 4 \)[/tex] which gives us [tex]\( \frac{1}{2}x + 4 \)[/tex]
- The right side simplifies as it is.
The equation is now:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Karissa subtracted 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
To solve [tex]\( \frac{1}{2}x = -\frac{1}{2}x \)[/tex], we add [tex]\( \frac{1}{2}x \)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].