College

Karissa begins to solve the equation:

[tex]\[

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)

\][/tex]

Her work is correct and is shown below:

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(-\frac{1}{2}\)[/tex]

C. [tex]\(0\)[/tex]

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Certainly! Let's go through the steps to solve the given equation:

The equation starts as:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

Karissa has already simplified this equation as follows:
1. Expand the left side: [tex]\( \frac{1}{2}(x-14) = \frac{1}{2}x - \frac{1}{2} \times 14 = \frac{1}{2}x - 7 \)[/tex]

2. Expand the right side:
- First, distribute the negative sign: [tex]\( -(x-4) = -x + 4 \)[/tex]
- Then: [tex]\( \frac{1}{2}x - x + 4 \)[/tex]

Now the equation looks like:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Next, she combined like terms:
- On the left side: [tex]\( -7 + 11 = 4 \)[/tex] which gives us [tex]\( \frac{1}{2}x + 4 \)[/tex]
- The right side simplifies as it is.

The equation is now:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Karissa subtracted 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

To solve [tex]\( \frac{1}{2}x = -\frac{1}{2}x \)[/tex], we add [tex]\( \frac{1}{2}x \)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This simplifies to:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].