College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Approximate the area between the [tex]x[/tex]-axis and [tex]g(x)[/tex] from [tex]x=10[/tex] to [tex]x=16[/tex] using a left Riemann sum with 3 unequal subdivisions.

[tex]
\[
\begin{array}{c|c|c|c|c}
\hline
x & 10 & 12 & 15 & 16 \\
\hline
g(x) & 5 & 1 & 7 & 7 \\
\hline
\end{array}
\]
[/tex]

The approximate area is [tex]\square[/tex] square units.

Answer :

To approximate the area between the [tex]$x$[/tex]-axis and [tex]$g(x)$[/tex] from [tex]$x=10$[/tex] to [tex]$x=16$[/tex] using a left Riemann sum with 3 subdivisions, follow these steps:

1. Identify the subdivision points:
[tex]$$x = 10, \quad 12, \quad 15, \quad 16.$$[/tex]
Thus, the subintervals are:
- From [tex]$10$[/tex] to [tex]$12$[/tex]
- From [tex]$12$[/tex] to [tex]$15$[/tex]
- From [tex]$15$[/tex] to [tex]$16$[/tex]

2. Compute the width of each subinterval:
- For the first subinterval:
[tex]$$\Delta x_1 = 12 - 10 = 2.$$[/tex]
- For the second subinterval:
[tex]$$\Delta x_2 = 15 - 12 = 3.$$[/tex]
- For the third subinterval:
[tex]$$\Delta x_3 = 16 - 15 = 1.$$[/tex]

3. Use the left endpoint values to compute the area of each subinterval:
- For the first subinterval, the left endpoint is at [tex]$x=10$[/tex] with [tex]$g(10)=5$[/tex], so the area is:
[tex]$$\text{Area}_1 = g(10) \cdot \Delta x_1 = 5 \cdot 2 = 10.$$[/tex]
- For the second subinterval, the left endpoint is at [tex]$x=12$[/tex] with [tex]$g(12)=1$[/tex], so the area is:
[tex]$$\text{Area}_2 = g(12) \cdot \Delta x_2 = 1 \cdot 3 = 3.$$[/tex]
- For the third subinterval, the left endpoint is at [tex]$x=15$[/tex] with [tex]$g(15)=7$[/tex], so the area is:
[tex]$$\text{Area}_3 = g(15) \cdot \Delta x_3 = 7 \cdot 1 = 7.$$[/tex]

4. Sum the areas of all subintervals to obtain the approximate total area:
[tex]$$\text{Total Area} = \text{Area}_1 + \text{Area}_2 + \text{Area}_3 = 10 + 3 + 7 = 20.$$[/tex]

Thus, the approximate area between the [tex]$x$[/tex]-axis and [tex]$g(x)$[/tex] on the given interval is
[tex]$$20 \text{ units}^2.$$[/tex]