Answer :
We are given two functions:
1. The average exam grade when [tex]$n$[/tex] students watch the video:
[tex]$$G(n) = 50 + 1.5n.$$[/tex]
2. The number of students watching an [tex]$m$[/tex] minute video:
[tex]$$S(m) = 30 - m.$$[/tex]
Since the number of students [tex]$n$[/tex] is given by [tex]$S(m)$[/tex], we substitute [tex]$n = 30 - m$[/tex] into [tex]$G(n)$[/tex] to express the average grade in terms of [tex]$m$[/tex]. This gives:
[tex]$$
G(S(m)) = 50 + 1.5(30 - m).
$$[/tex]
Now, follow these steps:
1. Multiply [tex]$1.5$[/tex] by [tex]$30$[/tex]:
[tex]$$1.5 \times 30 = 45.$$[/tex]
2. Substitute back into the equation:
[tex]$$G(S(m)) = 50 + 45 - 1.5m.$$[/tex]
3. Combine the constants [tex]$50$[/tex] and [tex]$45$[/tex]:
[tex]$$50 + 45 = 95.$$[/tex]
Thus, the average grade in terms of [tex]$m$[/tex] is:
[tex]$$
G(S(m)) = 95 - 1.5m.
$$[/tex]
So the expression that gives the average grade on an exam if the related video is [tex]$m$[/tex] minutes is
[tex]$$\boxed{95 - 1.5m}.$$[/tex]
This corresponds to option (D).
1. The average exam grade when [tex]$n$[/tex] students watch the video:
[tex]$$G(n) = 50 + 1.5n.$$[/tex]
2. The number of students watching an [tex]$m$[/tex] minute video:
[tex]$$S(m) = 30 - m.$$[/tex]
Since the number of students [tex]$n$[/tex] is given by [tex]$S(m)$[/tex], we substitute [tex]$n = 30 - m$[/tex] into [tex]$G(n)$[/tex] to express the average grade in terms of [tex]$m$[/tex]. This gives:
[tex]$$
G(S(m)) = 50 + 1.5(30 - m).
$$[/tex]
Now, follow these steps:
1. Multiply [tex]$1.5$[/tex] by [tex]$30$[/tex]:
[tex]$$1.5 \times 30 = 45.$$[/tex]
2. Substitute back into the equation:
[tex]$$G(S(m)) = 50 + 45 - 1.5m.$$[/tex]
3. Combine the constants [tex]$50$[/tex] and [tex]$45$[/tex]:
[tex]$$50 + 45 = 95.$$[/tex]
Thus, the average grade in terms of [tex]$m$[/tex] is:
[tex]$$
G(S(m)) = 95 - 1.5m.
$$[/tex]
So the expression that gives the average grade on an exam if the related video is [tex]$m$[/tex] minutes is
[tex]$$\boxed{95 - 1.5m}.$$[/tex]
This corresponds to option (D).