Answer :
To find the potential energy of the bicycle, we use the formula:
[tex]\[ \text{Potential Energy (PE)} = m \cdot g \cdot h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the bicycle,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height.
Given values:
- The mass [tex]\( m \)[/tex] is 25 kg.
- The acceleration due to gravity [tex]\( g \)[/tex] is 9.8 m/s².
- The height [tex]\( h \)[/tex] is 3 m.
Now, we substitute these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
First, calculate the product of the mass and gravity:
[tex]\[ 25 \times 9.8 = 245 \, \text{(in kg m/s}^2\text{ or N)} \][/tex]
Next, multiply this result by the height:
[tex]\[ 245 \times 3 = 735 \, \text{Joules (J)} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is 735 J.
So, the correct answer is 735 J.
[tex]\[ \text{Potential Energy (PE)} = m \cdot g \cdot h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the bicycle,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height.
Given values:
- The mass [tex]\( m \)[/tex] is 25 kg.
- The acceleration due to gravity [tex]\( g \)[/tex] is 9.8 m/s².
- The height [tex]\( h \)[/tex] is 3 m.
Now, we substitute these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
First, calculate the product of the mass and gravity:
[tex]\[ 25 \times 9.8 = 245 \, \text{(in kg m/s}^2\text{ or N)} \][/tex]
Next, multiply this result by the height:
[tex]\[ 245 \times 3 = 735 \, \text{Joules (J)} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is 735 J.
So, the correct answer is 735 J.