Answer :
To simplify the expression
[tex]$$
\frac{3.1 \times 10^3}{2.0 \times 10^2},
$$[/tex]
follow these steps:
1. Divide the Coefficients:
Divide the numerical parts:
[tex]$$
\frac{3.1}{2.0} = 1.55.
$$[/tex]
2. Subtract the Exponents:
When dividing powers of ten, subtract the exponent in the denominator from the exponent in the numerator:
[tex]$$
\frac{10^3}{10^2} = 10^{3-2} = 10^1.
$$[/tex]
3. Combine the Results:
Multiply the simplified coefficient by the power of ten:
[tex]$$
1.55 \times 10^1.
$$[/tex]
So, the simplified form in scientific notation is
[tex]$$
1.55 \times 10^1.
$$[/tex]
This corresponds to option A.
[tex]$$
\frac{3.1 \times 10^3}{2.0 \times 10^2},
$$[/tex]
follow these steps:
1. Divide the Coefficients:
Divide the numerical parts:
[tex]$$
\frac{3.1}{2.0} = 1.55.
$$[/tex]
2. Subtract the Exponents:
When dividing powers of ten, subtract the exponent in the denominator from the exponent in the numerator:
[tex]$$
\frac{10^3}{10^2} = 10^{3-2} = 10^1.
$$[/tex]
3. Combine the Results:
Multiply the simplified coefficient by the power of ten:
[tex]$$
1.55 \times 10^1.
$$[/tex]
So, the simplified form in scientific notation is
[tex]$$
1.55 \times 10^1.
$$[/tex]
This corresponds to option A.