Answer :
To add the given polynomials [tex]\(\left(x^5 + 2x^4 - 3x^2\right) + \left(7x^4 + x\right)\)[/tex], follow these steps:
1. Write down the polynomials to be added:
[tex]\[
\left(x^5 + 2x^4 - 3x^2\right) \quad \text{and} \quad \left(7x^4 + x\right)
\][/tex]
2. Align terms with the same power:
[tex]\[
x^5 + 2x^4 - 3x^2 \quad \text{and} \quad 7x^4 + x
\][/tex]
3. Combined, the expressions become:
[tex]\[
x^5 + 2x^4 - 3x^2 \\
+ \quad \quad 7x^4 + x
\][/tex]
4. Group like terms together:
[tex]\[
(x^5) + (2x^4 + 7x^4) + (x) + (-3x^2)
\][/tex]
5. Simplify each grouped term:
[tex]\[
x^5 + (2+7)x^4 + x - 3x^2
\][/tex]
6. Perform the arithmetic:
[tex]\[
x^5 + 9x^4 + x - 3x^2
\][/tex]
So the sum of the polynomials is:
[tex]\[
x^5 + 9x^4 - 3x^2 + x
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{A. \, x^5 + 9x^4 - 3x^2 + x}
\][/tex]
1. Write down the polynomials to be added:
[tex]\[
\left(x^5 + 2x^4 - 3x^2\right) \quad \text{and} \quad \left(7x^4 + x\right)
\][/tex]
2. Align terms with the same power:
[tex]\[
x^5 + 2x^4 - 3x^2 \quad \text{and} \quad 7x^4 + x
\][/tex]
3. Combined, the expressions become:
[tex]\[
x^5 + 2x^4 - 3x^2 \\
+ \quad \quad 7x^4 + x
\][/tex]
4. Group like terms together:
[tex]\[
(x^5) + (2x^4 + 7x^4) + (x) + (-3x^2)
\][/tex]
5. Simplify each grouped term:
[tex]\[
x^5 + (2+7)x^4 + x - 3x^2
\][/tex]
6. Perform the arithmetic:
[tex]\[
x^5 + 9x^4 + x - 3x^2
\][/tex]
So the sum of the polynomials is:
[tex]\[
x^5 + 9x^4 - 3x^2 + x
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{A. \, x^5 + 9x^4 - 3x^2 + x}
\][/tex]