College

A quartic function has roots of [tex]x = -3, 0[/tex], and [tex]-5i[/tex], with a leading coefficient of [tex]-1[/tex]. What is the equation of [tex]f(x)[/tex]?

A. [tex]-3x^3 - 25x^2 + 75x[/tex]

B. [tex]-ix^4 - 3ix^3 - 25ix^2 - 75ix[/tex]

C. [tex]x^4 + 3x^3 + 25x^2 + 75x[/tex]

D. [tex]-x^4 - 3x^3 - 25x^2 - 75x[/tex]

E. [tex]-x^4[/tex]

Answer :

To find the equation of the quartic function given its roots and leading coefficient, let's go through the process step-by-step:

### Step 1: Identify the Roots

The given roots of the quartic function are:
- [tex]\( x = -3 \)[/tex]
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = -5i \)[/tex]

Since complex roots come in conjugate pairs, the root [tex]\( x = -5i \)[/tex] implies there is also a root [tex]\( x = 5i \)[/tex].

### Step 2: Form Factorized Expression

The factorized form of the polynomial based on these roots is:
[tex]\[ (x + 3)(x)(x - 5i)(x + 5i) \][/tex]

### Step 3: Simplify Complex Roots

The expression [tex]\( (x - 5i)(x + 5i) \)[/tex] can be simplified using the difference of squares formula:
[tex]\[ (x - 5i)(x + 5i) = x^2 - (5i)^2 = x^2 - (-25) = x^2 + 25 \][/tex]

### Step 4: Expand the Polynomial

Now, substitute the simplified expression:

The polynomial becomes:
[tex]\[ (x + 3)(x)(x^2 + 25) \][/tex]

First, expand [tex]\( (x + 3)(x) \)[/tex]:
[tex]\[ (x + 3)x = x^2 + 3x \][/tex]

Now multiply this result by [tex]\( (x^2 + 25) \)[/tex]:
[tex]\[ (x^2 + 3x)(x^2 + 25) \][/tex]

Expanding these two binomials gives:
[tex]\[ x^2(x^2 + 25) + 3x(x^2 + 25) \][/tex]

Calculate each part:

- [tex]\( x^2 \cdot x^2 = x^4 \)[/tex]
- [tex]\( x^2 \cdot 25 = 25x^2 \)[/tex]
- [tex]\( 3x \cdot x^2 = 3x^3 \)[/tex]
- [tex]\( 3x \cdot 25 = 75x \)[/tex]

Putting it all together gives:
[tex]\[ x^4 + 3x^3 + 25x^2 + 75x \][/tex]

### Step 5: Apply Leading Coefficient

Since the leading coefficient is [tex]\(-1\)[/tex], multiply the entire polynomial by [tex]\(-1\)[/tex]:
[tex]\[ -1(x^4 + 3x^3 + 25x^2 + 75x) \][/tex]

This results in:
[tex]\[ -x^4 - 3x^3 - 25x^2 - 75x \][/tex]

Therefore, the equation of the quartic function is:
[tex]\[ -x^4 - 3x^3 - 25x^2 - 75x \][/tex]

This corresponds to the option:
[tex]\[ -x^4 - 3x^3 - 25x^2 - 75x \][/tex]