Answer :
Answer:
Explanation:
Given:
Power, p = 500 W
Time, t = 40 min
= 2400 s
Volume, V = 0.8 m^3
Temperature, T = 250 K
Pressure, P = 100 kPa
Temperature of surroundings, Ts = 300 K
Using ideal gas equation,
PV = nRT
n = (100 × 10^3 × 0.8)/(8.3145 × 250)
= 38.49 mole
Mass = number of moles × molar mass
Molar mass = 12 + (16 × 2)
= 44 g/mol
Mass = 44 × 38.49
= 1693.43 g
= 1.693 kg.
A.
P2 = 175 kPa
Using pressure law,
P1/T1 = P2/T2
T2 = (175 × 250)/100
= 437.5 K
B.
Cvco2 = 0.706 kJ/kg.K
Total energy, U = Qin - Qout
Qout = (p × t) - (m × cv × delta T)
= (500 × 2400) - (1.693 × 0.706 × (437.5 - 250))
= 1200 kJ - 224.11 kJ
= 975.889 kJ
= 975.9 kJ
C.
Cpco2 = 0.895 kJ/kg.K
Gas constant, Rc = R/molar mass of CO2
= 8.3145/44
= 0.189
Using the formula ,
Entropy, S = (m × (Cpco2 × ln(T2/T1) - Rc × ln(P2/P1)) + Qout/Ts
Inputting values,
= (1.693 × (0.895 × ln(437.5/250) - 0.189 × ln(175/100)) + 975.9/300
= 3.922 kJ/K.
a) The final temperature of CO₂ is 450 K b) The net amount of heat transfer from the tank is 986.55 kJ c) The entropy generation during the process is -2288.59 J/K.
To solve this problem, we need to determine several key aspects:
(a) Final Temperature of CO₂
Given: V = 0.8 m³, P₁ = 100 kPa, T₁ = 250 K, P₂ = 175 kPa.
Using the ideal gas law equation, PV = nRT, we first determine the initial amount of moles of CO₂ (n):
- P₁V = nRT₁,
P1 = 100 kPa (100,000 Pa),
R (specific gas constant for CO₂) = 8.314 J/mol·K.
So, [tex]n = \frac{P_1 V}{RT_1} = \frac{100{,}000 \times 0.8}{8.314 \times 250} = 38.5 \text{ moles}[/tex] - This value remains constant. To find the final temperature (T₂):
P₂V = nRT₂,
So,
[tex]T_2 = \frac{P_2 V}{nR} = \frac{175{,}000 \times 0.8}{38.5 \times 8.314} = 450 \, \text{K}[/tex]
(b) Net Amount of Heat Transfer
- Given heater power: 500 W, time = 40 min (2400 seconds).
- Energy added by the heater (Qin) = Power x time = 500 W x 2400 s = 1,200,000 J (1,200 kJ).
- Using Q = mCΔT ,
- where C (Cv, specific heat at constant volume) for CO₂ ≈ 28.46 J/mol·K
[tex]Q = n C (T_2 - T_1)[/tex] - [tex]Q = 38.5 \times 28.46 \times (450 - 250) = 213{,}449 \, \text{J} \quad (213.45 \, \text{kJ})[/tex].
Thus, net heat transfer is - Qnet = Qin - Q = 1,200 - 213.45 = 986.55 kJ
(c) Entropy Generation
- [tex]\Delta S = n C_v \ln\left(\frac{T_2}{T_1}\right) = 38.5 \times 28.46 \times \ln\left(\frac{450}{250}\right) = 1711.41 \, \text{J/K}[/tex]
With the surroundings at 300 K:
[tex]S_{\text{surr}} = \frac{Q_{\text{in}}}{T_{\text{surroundings}}} = \frac{1{,}200{,}000}{300} = 4000 \, \text{J/K}[/tex] - [tex]S_{\text{gen}} = \Delta S_{\text{total}} - S_{\text{surr}} = 1711.41 - 4000 = -2288.59 \, \text{J/K}[/tex]
Therefore, a) The final temperature of CO₂ is 450 K b) The net amount of heat transfer from the tank is 986.55 kJ c) The entropy generation during the process is -2288.59 J/K.