High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Use polynomial identities to multiply [tex]\left(5-4x^3\right)\left(5+4x^3\right)[/tex].

A. [tex]25-4x^9[/tex]
B. [tex]25-40x^3+16x^6[/tex]
C. [tex]25-4x^6[/tex]
D. [tex]25-16x^6[/tex]

Answer :

To solve the problem of multiplying [tex]\((5 - 4x^3)(5 + 4x^3)\)[/tex], we can use the identity known as the difference of squares. This identity tells us that:

[tex]\[
(a - b)(a + b) = a^2 - b^2
\][/tex]

In this case, we can identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] as follows:

- [tex]\(a = 5\)[/tex]
- [tex]\(b = 4x^3\)[/tex]

Using the difference of squares identity, we substitute these values in:

[tex]\[
(5 - 4x^3)(5 + 4x^3) = 5^2 - (4x^3)^2
\][/tex]

Now let's calculate step-by-step:

1. Calculate [tex]\(5^2\)[/tex]:
[tex]\[
5^2 = 25
\][/tex]

2. Calculate [tex]\((4x^3)^2\)[/tex]:
[tex]\[
(4x^3)^2 = 16x^6
\][/tex]

Now, apply the identity:

[tex]\[
25 - 16x^6
\][/tex]

The expression simplifies to the term:

[tex]\[
25 - 16x^6
\][/tex]

So, the correct answer is:

D [tex]\(25 - 16x^6\)[/tex]