Answer :
Let's solve each of the expressions step by step, using [tex]\( x = 6 \)[/tex].
9. Evaluate [tex]\( x - 6 \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex]:
[tex]\[
6 - 6 = 0
\][/tex]
10. Evaluate [tex]\( 10.7 + x \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex]:
[tex]\[
10.7 + 6 = 16.7
\][/tex]
11. Evaluate [tex]\( 3x - 9 \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex] and multiply:
[tex]\[
3 \times 6 - 9 = 18 - 9 = 9
\][/tex]
12. Evaluate [tex]\( 63 / x \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex] and divide:
[tex]\[
63 / 6 = 10.5
\][/tex]
13. Evaluate [tex]\( 5 + 5x + 10 \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex], multiply, and then add:
[tex]\[
5 + (5 \times 6) + 10 = 5 + 30 + 10 = 45
\][/tex]
So, the results are:
- For expression 9: [tex]\( 0 \)[/tex]
- For expression 10: [tex]\( 16.7 \)[/tex]
- For expression 11: [tex]\( 9 \)[/tex]
- For expression 12: [tex]\( 10.5 \)[/tex]
- For expression 13: [tex]\( 45 \)[/tex]
9. Evaluate [tex]\( x - 6 \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex]:
[tex]\[
6 - 6 = 0
\][/tex]
10. Evaluate [tex]\( 10.7 + x \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex]:
[tex]\[
10.7 + 6 = 16.7
\][/tex]
11. Evaluate [tex]\( 3x - 9 \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex] and multiply:
[tex]\[
3 \times 6 - 9 = 18 - 9 = 9
\][/tex]
12. Evaluate [tex]\( 63 / x \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex] and divide:
[tex]\[
63 / 6 = 10.5
\][/tex]
13. Evaluate [tex]\( 5 + 5x + 10 \)[/tex] when [tex]\( x = 6 \)[/tex]:
Substitute 6 for [tex]\( x \)[/tex], multiply, and then add:
[tex]\[
5 + (5 \times 6) + 10 = 5 + 30 + 10 = 45
\][/tex]
So, the results are:
- For expression 9: [tex]\( 0 \)[/tex]
- For expression 10: [tex]\( 16.7 \)[/tex]
- For expression 11: [tex]\( 9 \)[/tex]
- For expression 12: [tex]\( 10.5 \)[/tex]
- For expression 13: [tex]\( 45 \)[/tex]