Answer :
Let's solve each equation step by step.
Equation A:
[tex]\[
8.3 = -0.6x + 11.3
\][/tex]
Subtract [tex]\(11.3\)[/tex] from both sides:
[tex]\[
8.3 - 11.3 = -0.6x
\][/tex]
[tex]\[
-3 = -0.6x
\][/tex]
Now, divide both sides by [tex]\(-0.6\)[/tex]:
[tex]\[
x = \frac{-3}{-0.6} = 5
\][/tex]
Equation B:
[tex]\[
11.3 = 8.3 + 0.6x
\][/tex]
Subtract [tex]\(8.3\)[/tex] from both sides:
[tex]\[
11.3 - 8.3 = 0.6x
\][/tex]
[tex]\[
3 = 0.6x
\][/tex]
Divide both sides by [tex]\(0.6\)[/tex]:
[tex]\[
x = \frac{3}{0.6} = 5
\][/tex]
Equation C:
[tex]\[
11.3 - 0.6x = 8.3
\][/tex]
Subtract [tex]\(11.3\)[/tex] from both sides:
[tex]\[
-0.6x = 8.3 - 11.3
\][/tex]
[tex]\[
-0.6x = -3
\][/tex]
Divide both sides by [tex]\(-0.6\)[/tex]:
[tex]\[
x = \frac{-3}{-0.6} = 5
\][/tex]
Equation D:
[tex]\[
8.3 - 0.6x = 11.3
\][/tex]
Subtract [tex]\(8.3\)[/tex] from both sides:
[tex]\[
-0.6x = 11.3 - 8.3
\][/tex]
[tex]\[
-0.6x = 3
\][/tex]
Divide both sides by [tex]\(-0.6\)[/tex]:
[tex]\[
x = \frac{3}{-0.6} = -5
\][/tex]
Conclusion:
Equations A, B, and C yield [tex]\(x = 5\)[/tex], but Equation D yields [tex]\(x = -5\)[/tex]. Thus, the equation that results in a different value of [tex]\(x\)[/tex] is Equation D.
Equation A:
[tex]\[
8.3 = -0.6x + 11.3
\][/tex]
Subtract [tex]\(11.3\)[/tex] from both sides:
[tex]\[
8.3 - 11.3 = -0.6x
\][/tex]
[tex]\[
-3 = -0.6x
\][/tex]
Now, divide both sides by [tex]\(-0.6\)[/tex]:
[tex]\[
x = \frac{-3}{-0.6} = 5
\][/tex]
Equation B:
[tex]\[
11.3 = 8.3 + 0.6x
\][/tex]
Subtract [tex]\(8.3\)[/tex] from both sides:
[tex]\[
11.3 - 8.3 = 0.6x
\][/tex]
[tex]\[
3 = 0.6x
\][/tex]
Divide both sides by [tex]\(0.6\)[/tex]:
[tex]\[
x = \frac{3}{0.6} = 5
\][/tex]
Equation C:
[tex]\[
11.3 - 0.6x = 8.3
\][/tex]
Subtract [tex]\(11.3\)[/tex] from both sides:
[tex]\[
-0.6x = 8.3 - 11.3
\][/tex]
[tex]\[
-0.6x = -3
\][/tex]
Divide both sides by [tex]\(-0.6\)[/tex]:
[tex]\[
x = \frac{-3}{-0.6} = 5
\][/tex]
Equation D:
[tex]\[
8.3 - 0.6x = 11.3
\][/tex]
Subtract [tex]\(8.3\)[/tex] from both sides:
[tex]\[
-0.6x = 11.3 - 8.3
\][/tex]
[tex]\[
-0.6x = 3
\][/tex]
Divide both sides by [tex]\(-0.6\)[/tex]:
[tex]\[
x = \frac{3}{-0.6} = -5
\][/tex]
Conclusion:
Equations A, B, and C yield [tex]\(x = 5\)[/tex], but Equation D yields [tex]\(x = -5\)[/tex]. Thus, the equation that results in a different value of [tex]\(x\)[/tex] is Equation D.