Answer :
To solve for [tex]\( c \)[/tex] in the equation [tex]\( -40 = -5c - 25 \)[/tex], follow these steps:
1. Move the constant term on the right side to the left side of the equation to isolate the term containing [tex]\(c\)[/tex].
[tex]\[
-40 + 25 = -5c
\][/tex]
2. Simplify the left side:
[tex]\[
-40 + 25 = -15
\][/tex]
Now, the equation looks like this:
[tex]\[
-15 = -5c
\][/tex]
3. Solve for [tex]\( c \)[/tex] by dividing both sides of the equation by [tex]\(-5\)[/tex]:
[tex]\[
c = \frac{-15}{-5}
\][/tex]
4. Simplify the fraction:
[tex]\[
c = 3
\][/tex]
So,
[tex]\[
c = 3
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 3 \)[/tex].
1. Move the constant term on the right side to the left side of the equation to isolate the term containing [tex]\(c\)[/tex].
[tex]\[
-40 + 25 = -5c
\][/tex]
2. Simplify the left side:
[tex]\[
-40 + 25 = -15
\][/tex]
Now, the equation looks like this:
[tex]\[
-15 = -5c
\][/tex]
3. Solve for [tex]\( c \)[/tex] by dividing both sides of the equation by [tex]\(-5\)[/tex]:
[tex]\[
c = \frac{-15}{-5}
\][/tex]
4. Simplify the fraction:
[tex]\[
c = 3
\][/tex]
So,
[tex]\[
c = 3
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 3 \)[/tex].