Answer :
To determine the water pressure at the bottom of a container, you can use the basic formula for pressure, which is:
[tex]\[ \text{Pressure (P)} = \frac{\text{Force (F)}}{\text{Area (A)}} \][/tex]
Given the following information:
- The total force exerted by the water is [tex]\( F = 450 \)[/tex] newtons.
- The bottom area of the container is [tex]\( A = 2 \)[/tex] square meters.
First, we calculate the pressure in pascals (Pa):
[tex]\[ \text{Pressure (P)} = \frac{450 \text{ N}}{2 \text{ m}^2} = 225 \text{ Pa} \][/tex]
Next, we need to convert the pressure from pascals to kilopascals (kPa). The conversion factor is:
[tex]\[ 1 \text{ kPa} = 1000 \text{ Pa} \][/tex]
So,
[tex]\[ 225 \text{ Pa} = \frac{225 \text{ Pa}}{1000} = 0.225 \text{ kPa} \][/tex]
Therefore, the water pressure at the bottom of the container is:
[tex]\[
\boxed{0.225 \text{ kPa}}
\][/tex]
Hence, the correct answer is:
B. 0.225 kPa
[tex]\[ \text{Pressure (P)} = \frac{\text{Force (F)}}{\text{Area (A)}} \][/tex]
Given the following information:
- The total force exerted by the water is [tex]\( F = 450 \)[/tex] newtons.
- The bottom area of the container is [tex]\( A = 2 \)[/tex] square meters.
First, we calculate the pressure in pascals (Pa):
[tex]\[ \text{Pressure (P)} = \frac{450 \text{ N}}{2 \text{ m}^2} = 225 \text{ Pa} \][/tex]
Next, we need to convert the pressure from pascals to kilopascals (kPa). The conversion factor is:
[tex]\[ 1 \text{ kPa} = 1000 \text{ Pa} \][/tex]
So,
[tex]\[ 225 \text{ Pa} = \frac{225 \text{ Pa}}{1000} = 0.225 \text{ kPa} \][/tex]
Therefore, the water pressure at the bottom of the container is:
[tex]\[
\boxed{0.225 \text{ kPa}}
\][/tex]
Hence, the correct answer is:
B. 0.225 kPa