Answer :
To solve these equations, we will use a common technique for solving quartic equations by substituting a new variable, say [tex]y = x^2[/tex]. This simplifies the problem to dealing with a quadratic in terms of [tex]y[/tex]. Let's solve each part step-by-step.
a) Solve [tex]x^4 - 26x^2 + 25 = 0[/tex]:
- Substitute [tex]y = x^2[/tex]. Then [tex]x^4 = y^2[/tex], so the equation becomes:
[tex]y^2 - 26y + 25 = 0[/tex] - This is a quadratic equation in [tex]y[/tex]. We can use the quadratic formula [tex]y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex] with [tex]a = 1, b = -26, c = 25[/tex].
- Calculate the discriminant:
[tex](-26)^2 - 4 \times 1 \times 25 = 676 - 100 = 576[/tex] - Solve for [tex]y[/tex]:
[tex]y = \frac{26 \pm \sqrt{576}}{2} = \frac{26 \pm 24}{2}[/tex]- [tex]y_1 = \frac{26 + 24}{2} = 25[/tex]
- [tex]y_2 = \frac{26 - 24}{2} = 1[/tex]
- Recall that [tex]y = x^2[/tex]. So:
- [tex]x^2 = 25[/tex] gives [tex]x = \pm 5[/tex]
- [tex]x^2 = 1[/tex] gives [tex]x = \pm 1[/tex]
- Therefore, the solutions are [tex]x = 5, -5, 1, -1[/tex].
b) Solve [tex]x^4 + 8x^2 - 9 = 0[/tex]:
- Substitute [tex]y = x^2[/tex], resulting in:
[tex]y^2 + 8y - 9 = 0[/tex] - Again, apply the quadratic formula:
[tex]y = \frac{-8 \pm \sqrt{8^2 - 4 \times 1 \times (-9)}}{2} = \frac{-8 \pm \sqrt{64 + 36}}{2}[/tex] - The discriminant is 100, so:
[tex]y = \frac{-8 \pm 10}{2}[/tex]- [tex]y_1 = \frac{-8 + 10}{2} = 1[/tex]
- [tex]y_2 = \frac{-8 - 10}{2} = -9[/tex]
- Since [tex]y = x^2[/tex] and [tex]x^2 = -9[/tex] has no real solutions, we only use [tex]y_1 = 1[/tex]:
- [tex]x^2 = 1[/tex] gives [tex]x = \pm 1[/tex]
- Thus, the real solutions are [tex]x = 1, -1[/tex].
c) Solve [tex]9x^4 - 32x^2 - 16 = 0[/tex]:
- Substitute [tex]y = x^2[/tex], resulting in:
[tex]9y^2 - 32y - 16 = 0[/tex] - Use the quadratic formula:
[tex]y = \frac{32 \pm \sqrt{(-32)^2 - 4 \times 9 \times (-16)}}{18}[/tex] - Calculate the discriminant:
[tex]1024 + 576 = 1600[/tex] - Solve for [tex]y[/tex]:
[tex]y = \frac{32 \pm 40}{18}[/tex]- [tex]y_1 = \frac{72}{18} = 4[/tex]
- [tex]y_2 = \frac{-8}{18} = -\frac{4}{9}[/tex]
- Since [tex]y = x^2[/tex] and negative [tex]y[/tex] has no real solutions, we only consider [tex]y_1 = 4[/tex]:
- [tex]x^2 = 4[/tex] gives [tex]x = \pm 2[/tex]
- Therefore, the solutions are [tex]x = 2, -2[/tex].
By breaking down each equation, we simplify solving quartic equations into solving more manageable quadratic equations. Each transformation step is crucial to arrive at the right set of solutions.