Answer :
To solve these problems, we can use a shorter method by recognizing patterns and using some simple arithmetic tricks. Let's look at each one:
336 + 9999
When adding 336 to 9999, think of 9999 as 10000 - 1.
[tex]336 + 9999 = 336 + (10000 - 1)[/tex]
Simplify it:
[tex]336 + 10000 = 10336[/tex]
Then subtract 1:
[tex]10336 - 1 = 10335[/tex]
8125 + 9999
Again, use the trick: 9999 is 10000 - 1.
[tex]8125 + 9999 = 8125 + (10000 - 1)[/tex]
Simplify it:
[tex]8125 + 10000 = 18125[/tex]
Then subtract 1:
[tex]18125 - 1 = 18124[/tex]
1736 + 99999
Here, treat 99999 as 100000 - 1.
[tex]1736 + 99999 = 1736 + (100000 - 1)[/tex]
Simplify it:
[tex]1736 + 100000 = 101736[/tex]
Then subtract 1:
[tex]101736 - 1 = 101735[/tex]
1800 - 99
For subtraction, think of 99 as 100 - 1.
[tex]1800 - 99 = 1800 - (100 - 1)[/tex]
Simplify it:
[tex]1800 - 100 = 1700[/tex]
Then add 1:
[tex]1700 + 1 = 1701[/tex]
62939 - 9999
Again, consider 9999 as 10000 - 1.
[tex]62939 - 9999 = 62939 - (10000 - 1)[/tex]
Simplify it:
[tex]62939 - 10000 = 52939[/tex]
Then add 1:
[tex]52939 + 1 = 52940[/tex]
1739 x 9999
For multiplication, you can use the distributive property.
[tex]1739 \times 9999 = 1739 \times (10000 - 1)[/tex]
[tex]= 1739 \times 10000 - 1739 \times 1[/tex]
Calculate it:
[tex]1739 \times 10000 = 17390000[/tex]
[tex]1739 \times 1 = 1739[/tex]
Then subtract:
[tex]17390000 - 1739 = 17388261[/tex]
This method helps streamline calculations by using common numerical tricks to simplify arithmetic operations.