Answer :
Let's solve the problems step-by-step.
- Find the value of [tex]p[/tex] if [tex]p \times (-9) = 135.2[/tex].
To find [tex]p[/tex], we'll need to isolate it on one side of the equation. We can do this by dividing both sides of the equation by [tex]-9[/tex]:
[tex]p \times (-9) = 135.2[/tex]
Divide both sides by [tex]-9[/tex]:
[tex]p = \frac{135.2}{-9}[/tex]
Now, calculate the division:
[tex]p = -15.02\overline{2}[/tex]
Therefore, the value of [tex]p[/tex] is approximately [tex]-15.02\overline{2}[/tex].
- Use the sign of [tex]>[/tex], [tex]<[/tex] or [tex]=[/tex] in the box to make the statement true: [tex]25 - 40 + 10 \; \Box \; 25 - 40 - 10[/tex].
Let's simplify both sides:
- Left side: [tex]25 - 40 + 10 = -5[/tex].
- Right side: [tex]25 - 40 - 10 = -25[/tex].
Now compare [tex]-5[/tex] and [tex]-25[/tex]:
[tex]-5[/tex] is greater than [tex]-25[/tex], so the correct sign is [tex]>[/tex].
Thus, the statement should be:
[tex]25 - 40 + 10 > 25 - 40 - 10[/tex]