College

1. Find the product of [tex]$2x^4(4x^2+3x+1)$[/tex].

A. [tex]$8x^6+6x^5+2x^4$[/tex]

B. [tex][tex]$8x^8+3x^4+2x^4$[/tex][/tex]

C. [tex]$2x^4+6x^5+8x^6$[/tex]

D. [tex]$6x^6+5x^5+3x^4$[/tex]

Answer :

To find the product of [tex]\(2x^4(4x^2 + 3x + 1)\)[/tex], we need to distribute [tex]\(2x^4\)[/tex] to each term inside the parentheses. Let's do this step by step:

1. Multiply [tex]\(2x^4\)[/tex] by [tex]\(4x^2\)[/tex]:

[tex]\[
2x^4 \times 4x^2 = 8x^{4+2} = 8x^6
\][/tex]

The result of this multiplication is [tex]\(8x^6\)[/tex].

2. Multiply [tex]\(2x^4\)[/tex] by [tex]\(3x\)[/tex]:

[tex]\[
2x^4 \times 3x = 6x^{4+1} = 6x^5
\][/tex]

The result of this multiplication is [tex]\(6x^5\)[/tex].

3. Multiply [tex]\(2x^4\)[/tex] by [tex]\(1\)[/tex]:

[tex]\[
2x^4 \times 1 = 2x^4
\][/tex]

The result of this multiplication is [tex]\(2x^4\)[/tex].

4. Combine all the terms:

Now, add all the terms together to form the final expanded expression:

[tex]\[
8x^6 + 6x^5 + 2x^4
\][/tex]

So, the product of [tex]\(2x^4(4x^2 + 3x + 1)\)[/tex] is [tex]\(8x^6 + 6x^5 + 2x^4\)[/tex]. This corresponds to the first option in the given choices.