Answer :
To write out the first five terms of the sequence given by the formula [tex]\( a_n = 4(4n - 3) \)[/tex], follow these steps:
1. Find the first term ([tex]\( a_1 \)[/tex]):
- Substitute [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[
a_1 = 4(4 \times 1 - 3) = 4(4 - 3) = 4 \times 1 = 4
\][/tex]
2. Find the second term ([tex]\( a_2 \)[/tex]):
- Substitute [tex]\( n = 2 \)[/tex] into the formula:
[tex]\[
a_2 = 4(4 \times 2 - 3) = 4(8 - 3) = 4 \times 5 = 20
\][/tex]
3. Find the third term ([tex]\( a_3 \)[/tex]):
- Substitute [tex]\( n = 3 \)[/tex] into the formula:
[tex]\[
a_3 = 4(4 \times 3 - 3) = 4(12 - 3) = 4 \times 9 = 36
\][/tex]
4. Find the fourth term ([tex]\( a_4 \)[/tex]):
- Substitute [tex]\( n = 4 \)[/tex] into the formula:
[tex]\[
a_4 = 4(4 \times 4 - 3) = 4(16 - 3) = 4 \times 13 = 52
\][/tex]
5. Find the fifth term ([tex]\( a_5 \)[/tex]):
- Substitute [tex]\( n = 5 \)[/tex] into the formula:
[tex]\[
a_5 = 4(4 \times 5 - 3) = 4(20 - 3) = 4 \times 17 = 68
\][/tex]
After calculating the terms, the first five terms of the sequence are: [tex]\( 4, 20, 36, 52, 68 \)[/tex].
Therefore, the correct answer is option D: [tex]\( 4, 20, 36, 52, 68 \)[/tex].
1. Find the first term ([tex]\( a_1 \)[/tex]):
- Substitute [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[
a_1 = 4(4 \times 1 - 3) = 4(4 - 3) = 4 \times 1 = 4
\][/tex]
2. Find the second term ([tex]\( a_2 \)[/tex]):
- Substitute [tex]\( n = 2 \)[/tex] into the formula:
[tex]\[
a_2 = 4(4 \times 2 - 3) = 4(8 - 3) = 4 \times 5 = 20
\][/tex]
3. Find the third term ([tex]\( a_3 \)[/tex]):
- Substitute [tex]\( n = 3 \)[/tex] into the formula:
[tex]\[
a_3 = 4(4 \times 3 - 3) = 4(12 - 3) = 4 \times 9 = 36
\][/tex]
4. Find the fourth term ([tex]\( a_4 \)[/tex]):
- Substitute [tex]\( n = 4 \)[/tex] into the formula:
[tex]\[
a_4 = 4(4 \times 4 - 3) = 4(16 - 3) = 4 \times 13 = 52
\][/tex]
5. Find the fifth term ([tex]\( a_5 \)[/tex]):
- Substitute [tex]\( n = 5 \)[/tex] into the formula:
[tex]\[
a_5 = 4(4 \times 5 - 3) = 4(20 - 3) = 4 \times 17 = 68
\][/tex]
After calculating the terms, the first five terms of the sequence are: [tex]\( 4, 20, 36, 52, 68 \)[/tex].
Therefore, the correct answer is option D: [tex]\( 4, 20, 36, 52, 68 \)[/tex].