College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Write an equivalent expression without parentheses and combine terms (if possible).

a. [tex]\( 3y + 3(y - 2.5) = \qquad \)[/tex]

b. [tex]\( 6.25m + 9 + 3.75m - 12 = \qquad \)[/tex]

c. [tex]\( 4.5a + 7 + 3.5a + 2 = \qquad \)[/tex]

d. [tex]\( 0.5(-12p - 4) = \qquad \)[/tex]

e. [tex]\( -6\left(m + \frac{1}{2}\right) = \qquad \)[/tex]

f. [tex]\( 7(y + 7) - 11y = \qquad \)[/tex]

Answer :

Alright, let's simplify each provided expression step by step:

a. Simplify [tex]\(3y + 3(y - 2.5)\)[/tex]:

1. Distribute the [tex]\(3\)[/tex] to both terms inside the parentheses:
[tex]\[
3y + 3(y) - 3(2.5)
\][/tex]
2. This becomes:
[tex]\[
3y + 3y - 7.5
\][/tex]
3. Combine the like terms ([tex]\(3y\)[/tex] and [tex]\(3y\)[/tex]):
[tex]\[
6y - 7.5
\][/tex]

So, the simplified expression is:
[tex]\[
6y - 7.5
\][/tex]

b. Simplify [tex]\(6.25m + 9 + 3.75m - 12\)[/tex]:

1. Combine the like terms ([tex]\(6.25m\)[/tex] and [tex]\(3.75m\)[/tex]):
[tex]\[
(6.25 + 3.75)m + 9 - 12
\][/tex]
[tex]\[
10m + 9 - 12
\][/tex]
2. Combine the constants ([tex]\(9\)[/tex] and [tex]\(-12\)[/tex]):
[tex]\[
10m - 3
\][/tex]

So, the simplified expression is:
[tex]\[
10m - 3
\][/tex]

c. Simplify [tex]\(4.5a + 7 + 3.5a + 2\)[/tex]:

1. Combine the like terms ([tex]\(4.5a\)[/tex] and [tex]\(3.5a\)[/tex]):
[tex]\[
(4.5 + 3.5)a + 7 + 2
\][/tex]
[tex]\[
8a + 7 + 2
\][/tex]
2. Combine the constants ([tex]\(7\)[/tex] and [tex]\(2\)[/tex]):
[tex]\[
8a + 9
\][/tex]

So, the simplified expression is:
[tex]\[
8a + 9
\][/tex]

d. Simplify [tex]\(0.5(-12p - 4)\)[/tex]:

1. Distribute the [tex]\(0.5\)[/tex] to both terms inside the parentheses:
[tex]\[
0.5(-12p) + 0.5(-4)
\][/tex]
2. This becomes:
[tex]\[
-6p - 2
\][/tex]

So, the simplified expression is:
[tex]\[
-6p - 2
\][/tex]

e. Simplify [tex]\(-6\left(m + \frac{1}{2}\right)\)[/tex]:

1. Distribute the [tex]\(-6\)[/tex] to both terms inside the parentheses:
[tex]\[
-6(m) + -6\left(\frac{1}{2}\right)
\][/tex]
2. This becomes:
[tex]\[
-6m - 3
\][/tex]

So, the simplified expression is:
[tex]\[
-6m - 3
\][/tex]

f. Simplify [tex]\(7(y + 7) - 11y\)[/tex]:

1. Distribute the [tex]\(7\)[/tex] to both terms inside the parentheses:
[tex]\[
7(y) + 7(7) - 11y
\][/tex]
2. This becomes:
[tex]\[
7y + 49 - 11y
\][/tex]
3. Combine the like terms ([tex]\(7y\)[/tex] and [tex]\(-11y\)[/tex]):
[tex]\[
(7 - 11)y + 49
\][/tex]
[tex]\[
-4y + 49
\][/tex]

So, the simplified expression is:
[tex]\[
-4y + 49
\][/tex]