Answer :
Sure, let's work out the area of a trapezium using the given measurements.
1. Understand the Trapezium Formula:
The area [tex]\( A \)[/tex] of a trapezium can be calculated with the formula:
[tex]\[
A = \frac{1}{2} \times (\text{sum of the lengths of the parallel sides}) \times \text{height}
\][/tex]
2. Identify the Measurements:
- The lengths of the parallel sides are 8 cm and 12 cm.
- The height of the trapezium is 6 cm.
3. Substitute the Values into the Formula:
[tex]\[
A = \frac{1}{2} \times (8 + 12) \times 6
\][/tex]
4. Calculate the Sum of the Parallel Sides:
- [tex]\( 8 + 12 = 20 \)[/tex]
5. Calculate the Area:
[tex]\[
A = \frac{1}{2} \times 20 \times 6
\][/tex]
[tex]\[
A = 10 \times 6
\][/tex]
[tex]\[
A = 60
\][/tex]
So, the area of the trapezium is [tex]\( 60 \, \text{cm}^2 \)[/tex].
1. Understand the Trapezium Formula:
The area [tex]\( A \)[/tex] of a trapezium can be calculated with the formula:
[tex]\[
A = \frac{1}{2} \times (\text{sum of the lengths of the parallel sides}) \times \text{height}
\][/tex]
2. Identify the Measurements:
- The lengths of the parallel sides are 8 cm and 12 cm.
- The height of the trapezium is 6 cm.
3. Substitute the Values into the Formula:
[tex]\[
A = \frac{1}{2} \times (8 + 12) \times 6
\][/tex]
4. Calculate the Sum of the Parallel Sides:
- [tex]\( 8 + 12 = 20 \)[/tex]
5. Calculate the Area:
[tex]\[
A = \frac{1}{2} \times 20 \times 6
\][/tex]
[tex]\[
A = 10 \times 6
\][/tex]
[tex]\[
A = 60
\][/tex]
So, the area of the trapezium is [tex]\( 60 \, \text{cm}^2 \)[/tex].