College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which polynomial lists the powers in descending order?

A. [tex]3x^6 + 10x^2 + x^8 + 8x^3 - 2[/tex]

B. [tex]x^8 + 3x^6 + 8x^3 + 10x^2 - 2[/tex]

C. [tex]x^8 + 10x^2 + 8x^3 + 3x^6 - 2[/tex]

D. [tex]10x^2 + 8x^3 + x^8 - 2 + 3x^6[/tex]

Answer :

To determine which polynomial lists the powers in descending order, you need to rearrange each option so that the terms are ordered from highest power of [tex]\( x \)[/tex] to lowest power.

Let's analyze each option:

A. [tex]\(3 x^6 + 10 x^2 + x^8 + 8 x^3 - 2\)[/tex]:
- Rearrange in descending order: [tex]\(x^8 + 3x^6 + 8x^3 + 10x^2 - 2\)[/tex].

B. [tex]\(x^8 + 3 x^6 + 8 x^3 + 10 x^2 - 2\)[/tex]:
- This polynomial is already in descending order: [tex]\(x^8 + 3x^6 + 8x^3 + 10x^2 - 2\)[/tex].

C. [tex]\(x^8 + 10 x^2 + 8 x^3 + 3 x^6 - 2\)[/tex]:
- Rearrange in descending order: [tex]\(x^8 + 3x^6 + 8x^3 + 10x^2 - 2\)[/tex].

D. [tex]\(10 x^2 + 8 x^3 + x^8 - 2 + 3 x^6\)[/tex]:
- Rearrange in descending order: [tex]\(x^8 + 3x^6 + 8x^3 + 10x^2 - 2\)[/tex].

After rearranging all options, we see that option B is already presented in descending order with terms from highest to lowest power.

So, the correct answer is B. [tex]\(x^8 + 3 x^6 + 8 x^3 + 10 x^2 - 2\)[/tex].