Answer :
Sure! Let's go through each equation step-by-step and solve them to find the correct values of [tex]\( x \)[/tex].
1. Equation: [tex]\( x = 5 + 7 \)[/tex]
- Here, you just need to add 5 and 7.
- [tex]\( x = 5 + 7 \)[/tex]
- [tex]\( x = 12 \)[/tex]
2. Equation: [tex]\( x + 7 = 5 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract 7 from both sides.
- [tex]\( x + 7 - 7 = 5 - 7 \)[/tex]
- [tex]\( x = -2 \)[/tex]
3. Equation: [tex]\( x + 5 = 7 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract 5 from both sides.
- [tex]\( x + 5 - 5 = 7 - 5 \)[/tex]
- [tex]\( x = 2 \)[/tex]
4. Equation: [tex]\( x + 7 = 12 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract 7 from both sides.
- [tex]\( x + 7 - 7 = 12 - 7 \)[/tex]
- [tex]\( x = 5 \)[/tex]
Based on these calculations, the solutions for each of the equations are:
1. [tex]\( x = 12 \)[/tex]
2. [tex]\( x = -2 \)[/tex]
3. [tex]\( x = 2 \)[/tex]
4. [tex]\( x = 5 \)[/tex]
Thus, the correct steps and solutions are provided for the given equations.
1. Equation: [tex]\( x = 5 + 7 \)[/tex]
- Here, you just need to add 5 and 7.
- [tex]\( x = 5 + 7 \)[/tex]
- [tex]\( x = 12 \)[/tex]
2. Equation: [tex]\( x + 7 = 5 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract 7 from both sides.
- [tex]\( x + 7 - 7 = 5 - 7 \)[/tex]
- [tex]\( x = -2 \)[/tex]
3. Equation: [tex]\( x + 5 = 7 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract 5 from both sides.
- [tex]\( x + 5 - 5 = 7 - 5 \)[/tex]
- [tex]\( x = 2 \)[/tex]
4. Equation: [tex]\( x + 7 = 12 \)[/tex]
- To isolate [tex]\( x \)[/tex], subtract 7 from both sides.
- [tex]\( x + 7 - 7 = 12 - 7 \)[/tex]
- [tex]\( x = 5 \)[/tex]
Based on these calculations, the solutions for each of the equations are:
1. [tex]\( x = 12 \)[/tex]
2. [tex]\( x = -2 \)[/tex]
3. [tex]\( x = 2 \)[/tex]
4. [tex]\( x = 5 \)[/tex]
Thus, the correct steps and solutions are provided for the given equations.