College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which polynomial lists the powers in descending order?

A. [tex]3x^6 + 10x^2 + x^8 + 8x^3 - 2[/tex]
B. [tex]x^8 + 10x^2 + 8x^3 + 3x^6 - 2[/tex]
C. [tex]10x^2 + 8x^3 + x^8 - 2 + 3x^6[/tex]
D. [tex]x^8 + 3x^6 + 8x^3 + 10x^2 - 2[/tex]

Answer :

To identify which polynomial lists the powers in descending order, we need to examine the exponents of [tex]\(x\)[/tex] in each polynomial and ensure they decrease from left to right.

Option A: [tex]\( 3x^6 + 10x^2 + x^8 + 8x^3 - 2 \)[/tex]

- The powers of [tex]\(x\)[/tex] are [tex]\(6, 2, 8, 3, 0\)[/tex].
- These powers are not in descending order.

Option B: [tex]\( x^8 + 10x^2 + 8x^3 + 3x^6 - 2 \)[/tex]

- The powers of [tex]\(x\)[/tex] are [tex]\(8, 2, 3, 6, 0\)[/tex].
- These powers are not in descending order.

Option C: [tex]\( 10x^2 + 8x^3 + x^8 - 2 + 3x^6 \)[/tex]

- The powers of [tex]\(x\)[/tex] are [tex]\(2, 3, 8, 0, 6\)[/tex].
- These powers are not in descending order.

Option D: [tex]\( x^8 + 3x^6 + 8x^3 + 10x^2 - 2 \)[/tex]

- The powers of [tex]\(x\)[/tex] are [tex]\(8, 6, 3, 2, 0\)[/tex].
- These powers are in descending order.

Therefore, the polynomial that lists the powers in descending order is:

D. [tex]\( x^8 + 3x^6 + 8x^3 + 10x^2 - 2 \)[/tex]