College

Simplify [tex]8 + 3[x - 2[x + 5(x + 3)]] [/tex]

A. [tex]33x - 82[/tex]
B. [tex]-33x - 82[/tex]
C. [tex]-33x + 82[/tex]

Answer :

To simplify the expression [tex]\(8 + 3[x - 2[x + 5(x + 3)]]\)[/tex], we will follow a step-by-step process:

1. Start with the innermost expression:

Inside the parentheses, we begin with the expression [tex]\(5(x + 3)\)[/tex]:
[tex]\[
5(x + 3) = 5x + 15
\][/tex]

2. Substitute this into the next level:

Replace [tex]\(5(x + 3)\)[/tex] in the expression with the simplified result:
[tex]\[
2[x + 5(x + 3)] = 2[x + 5x + 15] = 2(6x + 15)
\][/tex]
Simplify further:
[tex]\[
2(6x + 15) = 12x + 30
\][/tex]

3. Move to the next outer bracket:

Substitute back into the main part of the expression:
[tex]\[
3[x - 2(x + 5(x + 3))] = 3[x - (12x + 30)]
\][/tex]
Simplify inside the bracket:
[tex]\[
x - (12x + 30) = x - 12x - 30 = -11x - 30
\][/tex]

4. Apply the multiplication:

Simplify by distributing the 3:
[tex]\[
3(-11x - 30) = -33x - 90
\][/tex]

5. Combine everything:

Add the result to the original number:
[tex]\[
8 + (-33x - 90) = -33x - 90 + 8
\][/tex]
Simplify this final expression:
[tex]\[
-33x - 82
\][/tex]

Therefore, the simplified expression is [tex]\(-33x - 82\)[/tex].