Answer :
To write the polynomial [tex]\(4x^2 - x + 8x^6 + 3 + 2x^{10}\)[/tex] in descending order, you need to arrange the terms based on the powers of [tex]\(x\)[/tex] from highest to lowest.
1. First, identify the terms and their respective powers:
- [tex]\(2x^{10}\)[/tex] (highest power is 10)
- [tex]\(8x^6\)[/tex] (next highest power is 6)
- [tex]\(4x^2\)[/tex] (next highest power is 2)
- [tex]\(-x\)[/tex] (next highest power is 1)
- [tex]\(3\)[/tex] (constant term with power 0)
2. Arrange these terms in descending order of their powers:
- [tex]\(2x^{10}\)[/tex] (power 10)
- [tex]\(8x^6\)[/tex] (power 6)
- [tex]\(4x^2\)[/tex] (power 2)
- [tex]\(-x\)[/tex] (power 1)
- [tex]\(3\)[/tex] (constant term)
Combining these, the polynomial in descending order is:
[tex]\[2x^{10} + 8x^6 + 4x^2 - x + 3\][/tex]
Now, let's match this format to the given choices:
A. [tex]\(8x^6 + 4x^2 + 3 + 2x^{10} - x\)[/tex] (not in correct order)
B. [tex]\(3 + 2x^{10} + 8x^6 + 4x^2 - x\)[/tex] (not in correct order)
C. [tex]\(2x^{10} + 4x^2 - x + 3 + 8x^6\)[/tex] (not in correct order)
D. [tex]\(2x^{10} + 8x^6 + 4x^2 - x + 3\)[/tex] (correct order)
Therefore, the correct answer is:
D. [tex]\(2x^{10} + 8x^6 + 4x^2 - x + 3\)[/tex]
1. First, identify the terms and their respective powers:
- [tex]\(2x^{10}\)[/tex] (highest power is 10)
- [tex]\(8x^6\)[/tex] (next highest power is 6)
- [tex]\(4x^2\)[/tex] (next highest power is 2)
- [tex]\(-x\)[/tex] (next highest power is 1)
- [tex]\(3\)[/tex] (constant term with power 0)
2. Arrange these terms in descending order of their powers:
- [tex]\(2x^{10}\)[/tex] (power 10)
- [tex]\(8x^6\)[/tex] (power 6)
- [tex]\(4x^2\)[/tex] (power 2)
- [tex]\(-x\)[/tex] (power 1)
- [tex]\(3\)[/tex] (constant term)
Combining these, the polynomial in descending order is:
[tex]\[2x^{10} + 8x^6 + 4x^2 - x + 3\][/tex]
Now, let's match this format to the given choices:
A. [tex]\(8x^6 + 4x^2 + 3 + 2x^{10} - x\)[/tex] (not in correct order)
B. [tex]\(3 + 2x^{10} + 8x^6 + 4x^2 - x\)[/tex] (not in correct order)
C. [tex]\(2x^{10} + 4x^2 - x + 3 + 8x^6\)[/tex] (not in correct order)
D. [tex]\(2x^{10} + 8x^6 + 4x^2 - x + 3\)[/tex] (correct order)
Therefore, the correct answer is:
D. [tex]\(2x^{10} + 8x^6 + 4x^2 - x + 3\)[/tex]