Answer :
To find the potential energy of the bicycle at the top of the hill, we can use the formula for potential energy:
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in this case, the bicycle), which is 25 kg,
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is approximately 9.8 m/s² on Earth,
- [tex]\( h \)[/tex] is the height of the hill, which is 3 meters.
Let's apply this to the given values:
1. Mass ([tex]\( m \)[/tex]): 25 kg
2. Gravity ([tex]\( g \)[/tex]): 9.8 m/s²
3. Height ([tex]\( h \)[/tex]): 3 m
Now, plug these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Calculate this step-by-step:
1. Multiply [tex]\( m \times g \)[/tex]:
[tex]\( 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 245 \, \text{kg} \cdot \text{m/s}^2 \)[/tex]
2. Multiply the result by [tex]\( h \)[/tex]:
[tex]\( 245 \, \text{kg} \cdot \text{m/s}^2 \times 3 \, \text{m} = 735 \, \text{J} \)[/tex]
Therefore, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex]. Thus, the correct answer is 735 J.
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in this case, the bicycle), which is 25 kg,
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is approximately 9.8 m/s² on Earth,
- [tex]\( h \)[/tex] is the height of the hill, which is 3 meters.
Let's apply this to the given values:
1. Mass ([tex]\( m \)[/tex]): 25 kg
2. Gravity ([tex]\( g \)[/tex]): 9.8 m/s²
3. Height ([tex]\( h \)[/tex]): 3 m
Now, plug these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Calculate this step-by-step:
1. Multiply [tex]\( m \times g \)[/tex]:
[tex]\( 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 245 \, \text{kg} \cdot \text{m/s}^2 \)[/tex]
2. Multiply the result by [tex]\( h \)[/tex]:
[tex]\( 245 \, \text{kg} \cdot \text{m/s}^2 \times 3 \, \text{m} = 735 \, \text{J} \)[/tex]
Therefore, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex]. Thus, the correct answer is 735 J.