College

Which of the following represents [tex]\sqrt[9]{x^7}[/tex] in exponential form?

A. [tex]x^{\frac{9}{7}}[/tex]

B. [tex]x^{\frac{7}{9}}[/tex]

C. [tex]9x^7[/tex]

D. [tex]7x^9[/tex]

Answer :

To convert the given expression [tex]\(\sqrt[9]{x^7}\)[/tex] into exponential form, we follow these steps:

1. Understand the radical notation: [tex]\(\sqrt[9]{x^7}\)[/tex] means "the 9th root of [tex]\(x^7\)[/tex]."

2. In exponential form, a radical of the form [tex]\(\sqrt[n]{x^m}\)[/tex] can be expressed as [tex]\(x^{\frac{m}{n}}\)[/tex].

3. Apply this to the given expression:
- Here, [tex]\(m = 7\)[/tex] and [tex]\(n = 9\)[/tex].

4. Substitute these values into the formula: [tex]\(x^{\frac{m}{n}} = x^{\frac{7}{9}}\)[/tex].

Therefore, [tex]\(\sqrt[9]{x^7}\)[/tex] in exponential form is [tex]\(x^{\frac{7}{9}}\)[/tex].

The correct answer from the options provided is:
- [tex]\(x^{\frac{7}{9}}\)[/tex]