Answer :
To convert the given expression [tex]\(9.75 \times 10^{-2}\)[/tex] into standard form, we need to understand what it means to multiply by [tex]\(10^{-2}\)[/tex].
1. The exponent [tex]\(-2\)[/tex] tells us to move the decimal point 2 places to the left because the exponent is negative.
2. Starting with the number 9.75, we move the decimal point 2 places to the left.
- Move 1 place: [tex]\(0.975\)[/tex]
- Move another place: [tex]\(0.0975\)[/tex]
So, [tex]\(9.75 \times 10^{-2} = 0.0975\)[/tex].
Therefore, the correct standard form of the number [tex]\(9.75 \times 10^{-2}\)[/tex] is:
D [tex]\(0.0975\)[/tex]
1. The exponent [tex]\(-2\)[/tex] tells us to move the decimal point 2 places to the left because the exponent is negative.
2. Starting with the number 9.75, we move the decimal point 2 places to the left.
- Move 1 place: [tex]\(0.975\)[/tex]
- Move another place: [tex]\(0.0975\)[/tex]
So, [tex]\(9.75 \times 10^{-2} = 0.0975\)[/tex].
Therefore, the correct standard form of the number [tex]\(9.75 \times 10^{-2}\)[/tex] is:
D [tex]\(0.0975\)[/tex]