High School

Simplify the expression:

[tex]\left(7x + 2 + 8x^4\right) - \left(2x - 5 - 8x^4\right) + \left(3x + 5x^4\right)[/tex]

A) [tex]21x^4 + 8x + 7[/tex]
B) [tex]21x^4 + 14x + 7[/tex]
C) [tex]15x^4 + 19x + 7[/tex]
D) [tex]15x^4 + 14x + 7[/tex]

Answer :

We start with the expression
[tex]$$
\left(7x+2+8x^4\right)-\left(2x-5-8x^4\right)+\left(3x+5x^4\right).
$$[/tex]

Step 1. Remove Parentheses

In the second term, distribute the minus sign:
[tex]$$
-\left(2x-5-8x^4\right) = -2x + 5 + 8x^4.
$$[/tex]

Thus, the expression becomes:
[tex]\[
7x + 2 + 8x^4 -2x + 5 + 8x^4 + 3x + 5x^4.
\][/tex]

Step 2. Group Like Terms

Group the terms with the same power of [tex]$x$[/tex]:

- For [tex]$x^4$[/tex] terms:
[tex]$$
8x^4 + 8x^4 + 5x^4 = (8+8+5)x^4 = 21x^4.
$$[/tex]

- For [tex]$x$[/tex] terms:
[tex]$$
7x - 2x + 3x = (7-2+3)x = 8x.
$$[/tex]

- For constant terms:
[tex]$$
2 + 5 = 7.
$$[/tex]

Step 3. Write the Final Simplified Expression

Combining the results, we have:
[tex]$$
21x^4 + 8x + 7.
$$[/tex]

This corresponds to option A.