Answer :
Sure, let's simplify the expression step by step.
We have the expression: [tex]\(-4x^3 - 12x^3 + 9x^2\)[/tex].
1. Combine like terms for [tex]\(x^3\)[/tex]:
The terms [tex]\(-4x^3\)[/tex] and [tex]\(-12x^3\)[/tex] are like terms because they both contain [tex]\(x^3\)[/tex]. We can add them together:
[tex]\(-4x^3 - 12x^3 = (-4 - 12)x^3 = -16x^3\)[/tex].
2. Write the full simplified expression:
After combining the like terms, we add the [tex]\(9x^2\)[/tex] term:
[tex]\(-16x^3 + 9x^2\)[/tex].
The expression [tex]\(-4x^3 - 12x^3 + 9x^2\)[/tex] simplifies to [tex]\(-16x^3 + 9x^2\)[/tex]. Therefore, the answer is:
[tex]\(-16x^3 + 9x^2\)[/tex]
We have the expression: [tex]\(-4x^3 - 12x^3 + 9x^2\)[/tex].
1. Combine like terms for [tex]\(x^3\)[/tex]:
The terms [tex]\(-4x^3\)[/tex] and [tex]\(-12x^3\)[/tex] are like terms because they both contain [tex]\(x^3\)[/tex]. We can add them together:
[tex]\(-4x^3 - 12x^3 = (-4 - 12)x^3 = -16x^3\)[/tex].
2. Write the full simplified expression:
After combining the like terms, we add the [tex]\(9x^2\)[/tex] term:
[tex]\(-16x^3 + 9x^2\)[/tex].
The expression [tex]\(-4x^3 - 12x^3 + 9x^2\)[/tex] simplifies to [tex]\(-16x^3 + 9x^2\)[/tex]. Therefore, the answer is:
[tex]\(-16x^3 + 9x^2\)[/tex]