Answer :

the correct answer is:

B. [tex]\(\frac{1}{4x^{2/9}}\)[/tex]

To create an equivalent expression for [tex]\((64x^{2/3})^{-1/3}\)[/tex], we'll use exponent rules.

Apply the negative exponent rule, which states that [tex]\(a^{-n} = \frac{1}{a^n}\):[/tex]

[tex]\[(64x^{2/3})^{-1/3} = \frac{1}{(64x^{2/3})^{1/3}}\][/tex]

Apply the power of a power rule, which states that [tex]\((a^m)^n = a^{mn}\):[/tex]

[tex]\[\frac{1}{(64x^{2/3})^{1/3}} = \frac{1}{64^{1/3} (x^{2/3})^{1/3}}\][/tex]

Simplify the expression inside the parentheses:

[tex]\[64^{1/3} = (4^3)^{1/3} = 4\][/tex]

[tex]\[(x^{2/3})^{1/3} = x^{\frac{2}{3} \cdot \frac{1}{3}} = x^{2/9}\][/tex]

Substitute the simplified expressions back into the equation:

[tex]\[\frac{1}{64^{1/3} (x^{2/3})^{1/3}} = \frac{1}{4 \cdot x^{2/9}}\][/tex]

So, the equivalent expression is [tex]\(\frac{1}{4x^{2/9}}\)[/tex], which matches option B. Therefore, the correct answer is:

B. [tex]\(\frac{1}{4x^{2/9}}\)[/tex]

The complete question is:

Given the algebraic expression[tex](64x^2/3)^-1/3[/tex] create an equivalent expression.

A. 1/4x^1/3

B. 1/4x^2/9

C. 4x^1/3

D. 4x^2/9