Answer :
To solve this problem, we need to determine which options are equal to the expression [tex]\(\sqrt{64} \cdot \sqrt{25}\)[/tex].
1. Calculate the expression:
[tex]\[
\sqrt{64} \cdot \sqrt{25}
\][/tex]
- First, find [tex]\(\sqrt{64}\)[/tex]. Since [tex]\(64\)[/tex] is a perfect square, [tex]\(\sqrt{64} = 8\)[/tex].
- Next, find [tex]\(\sqrt{25}\)[/tex]. Since [tex]\(25\)[/tex] is also a perfect square, [tex]\(\sqrt{25} = 5\)[/tex].
- Multiply the results: [tex]\(8 \times 5 = 40\)[/tex].
So, [tex]\(\sqrt{64} \cdot \sqrt{25} = 40\)[/tex].
2. Evaluate each option to see if it equals 40:
A. [tex]\(5 \sqrt{64}\)[/tex]
- Calculate [tex]\(\sqrt{64}\)[/tex]: [tex]\(8\)[/tex], then [tex]\(5 \times 8 = 40\)[/tex],
- So option A is equal to 40.
B. 40
- This is exactly 40,
- So option B is equal to 40.
C. 1600
- This is not equal to 40, so option C does not match.
D. [tex]\(\sqrt{1600}\)[/tex]
- Calculate [tex]\(\sqrt{1600}\)[/tex]. Since [tex]\(1600\)[/tex] is a perfect square, [tex]\(\sqrt{1600} = 40\)[/tex],
- So option D is equal to 40.
E. 89
- This number does not equal 40, so option E does not match.
F. [tex]\(\sqrt{40}\)[/tex]
- Calculate [tex]\(\sqrt{40}\)[/tex]. Since [tex]\(40\)[/tex] is not a perfect square, [tex]\(\sqrt{40}\)[/tex] is not equal to 40,
- So option F does not match.
3. Conclusion:
The options that equal the expression [tex]\(\sqrt{64} \cdot \sqrt{25}\)[/tex] are A, B, and D.
1. Calculate the expression:
[tex]\[
\sqrt{64} \cdot \sqrt{25}
\][/tex]
- First, find [tex]\(\sqrt{64}\)[/tex]. Since [tex]\(64\)[/tex] is a perfect square, [tex]\(\sqrt{64} = 8\)[/tex].
- Next, find [tex]\(\sqrt{25}\)[/tex]. Since [tex]\(25\)[/tex] is also a perfect square, [tex]\(\sqrt{25} = 5\)[/tex].
- Multiply the results: [tex]\(8 \times 5 = 40\)[/tex].
So, [tex]\(\sqrt{64} \cdot \sqrt{25} = 40\)[/tex].
2. Evaluate each option to see if it equals 40:
A. [tex]\(5 \sqrt{64}\)[/tex]
- Calculate [tex]\(\sqrt{64}\)[/tex]: [tex]\(8\)[/tex], then [tex]\(5 \times 8 = 40\)[/tex],
- So option A is equal to 40.
B. 40
- This is exactly 40,
- So option B is equal to 40.
C. 1600
- This is not equal to 40, so option C does not match.
D. [tex]\(\sqrt{1600}\)[/tex]
- Calculate [tex]\(\sqrt{1600}\)[/tex]. Since [tex]\(1600\)[/tex] is a perfect square, [tex]\(\sqrt{1600} = 40\)[/tex],
- So option D is equal to 40.
E. 89
- This number does not equal 40, so option E does not match.
F. [tex]\(\sqrt{40}\)[/tex]
- Calculate [tex]\(\sqrt{40}\)[/tex]. Since [tex]\(40\)[/tex] is not a perfect square, [tex]\(\sqrt{40}\)[/tex] is not equal to 40,
- So option F does not match.
3. Conclusion:
The options that equal the expression [tex]\(\sqrt{64} \cdot \sqrt{25}\)[/tex] are A, B, and D.