Answer :
Let's break down the original expression and find which of the given expressions are equivalent to it.
The original expression is:
[tex]\[ -9\left(\frac{2}{3} x + 1\right) \][/tex]
To simplify, we need to distribute the [tex]\(-9\)[/tex] through the parentheses:
1. Distribute [tex]\(-9\)[/tex] to [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\(-9 \times \frac{2}{3}x = -6x\)[/tex]
2. Distribute [tex]\(-9\)[/tex] to [tex]\(1\)[/tex]:
[tex]\(-9 \times 1 = -9\)[/tex]
Putting it all together, the simplified expression is:
[tex]\[ -6x - 9 \][/tex]
Now, let's compare the given expressions to [tex]\(-6x - 9\)[/tex] to see which ones are equivalent:
1. [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex]
2. [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex]
3. [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex]
4. [tex]\(-6x + 1\)[/tex]
5. [tex]\(-6x + 9\)[/tex]
6. [tex]\(-6x - 9\)[/tex]
The expressions that are equivalent to the original expression [tex]\(-6x - 9\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
So, the correct choices are the second and sixth expressions.
The original expression is:
[tex]\[ -9\left(\frac{2}{3} x + 1\right) \][/tex]
To simplify, we need to distribute the [tex]\(-9\)[/tex] through the parentheses:
1. Distribute [tex]\(-9\)[/tex] to [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\(-9 \times \frac{2}{3}x = -6x\)[/tex]
2. Distribute [tex]\(-9\)[/tex] to [tex]\(1\)[/tex]:
[tex]\(-9 \times 1 = -9\)[/tex]
Putting it all together, the simplified expression is:
[tex]\[ -6x - 9 \][/tex]
Now, let's compare the given expressions to [tex]\(-6x - 9\)[/tex] to see which ones are equivalent:
1. [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex]
2. [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex]
3. [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex]
4. [tex]\(-6x + 1\)[/tex]
5. [tex]\(-6x + 9\)[/tex]
6. [tex]\(-6x - 9\)[/tex]
The expressions that are equivalent to the original expression [tex]\(-6x - 9\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
So, the correct choices are the second and sixth expressions.