Answer :
To find which expressions are equivalent to [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex], we need to distribute the [tex]\(-9\)[/tex] across each term inside the parentheses. Let's do this step-by-step:
1. Distribute [tex]\(-9\)[/tex]:
[tex]\[
-9 \left(\frac{2}{3} x + 1\right) = -9 \times \frac{2}{3} x + (-9 \times 1)
\][/tex]
2. Calculate each part:
- [tex]\(-9 \times \frac{2}{3} x = -6x\)[/tex]
(because [tex]\(-9 \times \frac{2}{3} = -6\)[/tex])
- [tex]\(-9 \times 1 = -9\)[/tex]
3. Combine the results:
[tex]\(-6x - 9\)[/tex]
Now, this is the expression we came up with: [tex]\(-6x - 9\)[/tex].
Let's check each option to see which ones match:
1. [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]:
Simplifies to: [tex]\(-6x + 9\)[/tex]
Not equivalent to [tex]\(-6x - 9\)[/tex].
2. [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]:
Simplifies to: [tex]\(-6x - 9\)[/tex]
Equivalent to [tex]\(-6x - 9\)[/tex].
3. [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]:
Simplifies to: [tex]\(-6x + 1\)[/tex]
Not equivalent to [tex]\(-6x - 9\)[/tex].
4. [tex]\(-6x + 1\)[/tex]:
Not equivalent to [tex]\(-6x - 9\)[/tex].
5. [tex]\(-6x + 9\)[/tex]:
Not equivalent to [tex]\(-6x - 9\)[/tex].
6. [tex]\(-6x - 9\)[/tex]:
This is exactly what we found, so it is equivalent to [tex]\(-6x - 9\)[/tex].
So, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
1. Distribute [tex]\(-9\)[/tex]:
[tex]\[
-9 \left(\frac{2}{3} x + 1\right) = -9 \times \frac{2}{3} x + (-9 \times 1)
\][/tex]
2. Calculate each part:
- [tex]\(-9 \times \frac{2}{3} x = -6x\)[/tex]
(because [tex]\(-9 \times \frac{2}{3} = -6\)[/tex])
- [tex]\(-9 \times 1 = -9\)[/tex]
3. Combine the results:
[tex]\(-6x - 9\)[/tex]
Now, this is the expression we came up with: [tex]\(-6x - 9\)[/tex].
Let's check each option to see which ones match:
1. [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]:
Simplifies to: [tex]\(-6x + 9\)[/tex]
Not equivalent to [tex]\(-6x - 9\)[/tex].
2. [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]:
Simplifies to: [tex]\(-6x - 9\)[/tex]
Equivalent to [tex]\(-6x - 9\)[/tex].
3. [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]:
Simplifies to: [tex]\(-6x + 1\)[/tex]
Not equivalent to [tex]\(-6x - 9\)[/tex].
4. [tex]\(-6x + 1\)[/tex]:
Not equivalent to [tex]\(-6x - 9\)[/tex].
5. [tex]\(-6x + 9\)[/tex]:
Not equivalent to [tex]\(-6x - 9\)[/tex].
6. [tex]\(-6x - 9\)[/tex]:
This is exactly what we found, so it is equivalent to [tex]\(-6x - 9\)[/tex].
So, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]