Answer :
Sure! Let's solve the problem step by step without referring to any code.
We need to find expressions equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex].
### Step 1: Distribute [tex]\(-9\)[/tex] to each term inside the parentheses.
The expression is [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex].
- First, multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3} x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3} x = -6x
\][/tex]
- Next, multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
### Step 2: Combine the results.
Combine the two results to rewrite the expression:
[tex]\[
-6x - 9
\][/tex]
### Step 3: Check which given options are equivalent to [tex]\(-6x - 9\)[/tex].
Let's check:
- [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex]. This is NOT equivalent.
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex]. This IS equivalent.
- [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex]. This is NOT equivalent.
- [tex]\(-6x + 1\)[/tex] is NOT equivalent.
- [tex]\(-6x + 9\)[/tex] is NOT equivalent.
- [tex]\(-6x - 9\)[/tex] IS equivalent.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
We need to find expressions equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex].
### Step 1: Distribute [tex]\(-9\)[/tex] to each term inside the parentheses.
The expression is [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex].
- First, multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3} x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3} x = -6x
\][/tex]
- Next, multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
### Step 2: Combine the results.
Combine the two results to rewrite the expression:
[tex]\[
-6x - 9
\][/tex]
### Step 3: Check which given options are equivalent to [tex]\(-6x - 9\)[/tex].
Let's check:
- [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex]. This is NOT equivalent.
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex]. This IS equivalent.
- [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex]. This is NOT equivalent.
- [tex]\(-6x + 1\)[/tex] is NOT equivalent.
- [tex]\(-6x + 9\)[/tex] is NOT equivalent.
- [tex]\(-6x - 9\)[/tex] IS equivalent.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]