Answer :
We are given:
- Mass [tex]$m = 25\,\text{kg}$[/tex],
- Height [tex]$h = 3\,\text{m}$[/tex], and
- Gravitational acceleration [tex]$g = 9.8\,\text{m/s}^2$[/tex].
The potential energy is calculated using the formula
[tex]$$
PE = m \cdot g \cdot h.
$$[/tex]
Substitute the given values into the formula:
[tex]$$
PE = 25 \cdot 9.8 \cdot 3.
$$[/tex]
First, multiply the mass by gravity:
[tex]$$
25 \cdot 9.8 = 245.
$$[/tex]
Then multiply by the height:
[tex]$$
245 \cdot 3 = 735.
$$[/tex]
Thus, the potential energy is
[tex]$$
PE = 735\,\text{J}.
$$[/tex]
Therefore, the correct answer is [tex]$\boxed{735\,\text{J}}$[/tex].
- Mass [tex]$m = 25\,\text{kg}$[/tex],
- Height [tex]$h = 3\,\text{m}$[/tex], and
- Gravitational acceleration [tex]$g = 9.8\,\text{m/s}^2$[/tex].
The potential energy is calculated using the formula
[tex]$$
PE = m \cdot g \cdot h.
$$[/tex]
Substitute the given values into the formula:
[tex]$$
PE = 25 \cdot 9.8 \cdot 3.
$$[/tex]
First, multiply the mass by gravity:
[tex]$$
25 \cdot 9.8 = 245.
$$[/tex]
Then multiply by the height:
[tex]$$
245 \cdot 3 = 735.
$$[/tex]
Thus, the potential energy is
[tex]$$
PE = 735\,\text{J}.
$$[/tex]
Therefore, the correct answer is [tex]$\boxed{735\,\text{J}}$[/tex].