College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expressions are equivalent to [tex]$25 x^4 - 64$[/tex]? Select three options.

A. [tex]$25 x^4 + 40 x - 40 x - 64$[/tex]

B. [tex][tex]$25 x^4 + 13 x - 13 x - 64$[/tex][/tex]

C. [tex]$(5 x^2 + 8)(5 x^2 - 8)$[/tex]

D. [tex]$(x^2 + 13)(x^2 - 13)$[/tex]

E. [tex][tex]$(5 x^2 - 8)^2$[/tex][/tex]

Answer :

Let's solve the problem of finding which expressions are equivalent to [tex]\(25x^4 - 64\)[/tex].

1. First Expression: [tex]\(25x^4 + 40x - 40x - 64\)[/tex]

To find if this expression is equivalent to [tex]\(25x^4 - 64\)[/tex], simplify it:

[tex]\[
25x^4 + 40x - 40x - 64 = 25x^4 + (40x - 40x) - 64 = 25x^4 - 64
\][/tex]

This expression is equivalent to [tex]\(25x^4 - 64\)[/tex].

2. Second Expression: [tex]\(25x^4 + 13x - 13x - 64\)[/tex]

Simplify this expression:

[tex]\[
25x^4 + 13x - 13x - 64 = 25x^4 + (13x - 13x) - 64 = 25x^4 - 64
\][/tex]

This expression is also equivalent to [tex]\(25x^4 - 64\)[/tex].

3. Third Expression: [tex]\((5x^2 + 8)(5x^2 - 8)\)[/tex]

This expression is in the form of a difference of squares, which states:

[tex]\[
(a + b)(a - b) = a^2 - b^2
\][/tex]

Here, [tex]\(a = 5x^2\)[/tex] and [tex]\(b = 8\)[/tex], therefore:

[tex]\[
(5x^2 + 8)(5x^2 - 8) = (5x^2)^2 - 8^2 = 25x^4 - 64
\][/tex]

This expression is equivalent to [tex]\(25x^4 - 64\)[/tex].

4. Fourth Expression: [tex]\((x^2 + 13)(x^2 - 13)\)[/tex]

This follows the same difference of squares formula:

[tex]\[
(x^2 + 13)(x^2 - 13) = (x^2)^2 - 13^2 = x^4 - 169
\][/tex]

This simplifies to [tex]\(x^4 - 169\)[/tex], which is not equivalent to [tex]\(25x^4 - 64\)[/tex].

5. Fifth Expression: [tex]\((5x^2 - 8)^2\)[/tex]

Expanding this, we get:

[tex]\[
(5x^2 - 8)^2 = (5x^2)^2 - 2 \times 5x^2 \times 8 + 8^2 = 25x^4 - 80x^2 + 64
\][/tex]

This is not equivalent to [tex]\(25x^4 - 64\)[/tex].

With these evaluations, the expressions equivalent to [tex]\(25x^4 - 64\)[/tex] are:

1. [tex]\(25x^4 + 40x - 40x - 64\)[/tex]
2. [tex]\(25x^4 + 13x - 13x - 64\)[/tex]
3. [tex]\((5x^2 + 8)(5x^2 - 8)\)[/tex]

These are the expressions that match.