Answer :
To solve the given problem, we need to add the two polynomials together by combining like terms. Let's start by writing down the two polynomials:
1. [tex]\(-11x^2 + 1.4x - 3\)[/tex]
2. [tex]\(4x^2 - 2.7x + 8\)[/tex]
Now, we'll follow these steps:
1. Combine the [tex]\(x^2\)[/tex] terms:
- From the first polynomial: [tex]\(-11x^2\)[/tex]
- From the second polynomial: [tex]\(4x^2\)[/tex]
- Adding them together: [tex]\( -11x^2 + 4x^2 = -7x^2 \)[/tex]
2. Combine the [tex]\(x\)[/tex] terms:
- From the first polynomial: [tex]\(1.4x\)[/tex]
- From the second polynomial: [tex]\(-2.7x\)[/tex]
- Adding them together: [tex]\(1.4x - 2.7x = -1.3x\)[/tex]
3. Combine the constant terms:
- From the first polynomial: [tex]\(-3\)[/tex]
- From the second polynomial: [tex]\(8\)[/tex]
- Adding them together: [tex]\(-3 + 8 = 5\)[/tex]
Putting it all together, we get the combined expression:
[tex]\[ -7x^2 - 1.3x + 5 \][/tex]
Therefore, the expression that is equivalent to [tex]\(\left(-11x^2 + 1.4x - 3\right) + \left(4x^2 - 2.7x + 8\right)\)[/tex] is:
[tex]\(\boxed{-7x^2 - 1.3x + 5}\)[/tex]
So, the correct answer is:
A. [tex]\(-7x^2 - 1.3x + 5\)[/tex]
1. [tex]\(-11x^2 + 1.4x - 3\)[/tex]
2. [tex]\(4x^2 - 2.7x + 8\)[/tex]
Now, we'll follow these steps:
1. Combine the [tex]\(x^2\)[/tex] terms:
- From the first polynomial: [tex]\(-11x^2\)[/tex]
- From the second polynomial: [tex]\(4x^2\)[/tex]
- Adding them together: [tex]\( -11x^2 + 4x^2 = -7x^2 \)[/tex]
2. Combine the [tex]\(x\)[/tex] terms:
- From the first polynomial: [tex]\(1.4x\)[/tex]
- From the second polynomial: [tex]\(-2.7x\)[/tex]
- Adding them together: [tex]\(1.4x - 2.7x = -1.3x\)[/tex]
3. Combine the constant terms:
- From the first polynomial: [tex]\(-3\)[/tex]
- From the second polynomial: [tex]\(8\)[/tex]
- Adding them together: [tex]\(-3 + 8 = 5\)[/tex]
Putting it all together, we get the combined expression:
[tex]\[ -7x^2 - 1.3x + 5 \][/tex]
Therefore, the expression that is equivalent to [tex]\(\left(-11x^2 + 1.4x - 3\right) + \left(4x^2 - 2.7x + 8\right)\)[/tex] is:
[tex]\(\boxed{-7x^2 - 1.3x + 5}\)[/tex]
So, the correct answer is:
A. [tex]\(-7x^2 - 1.3x + 5\)[/tex]