High School

Multiply:

[tex] (x^4 + 1)(3x^2 + 9x + 2) [/tex]

Options:

A. [tex] x^4 + 3x^2 + 9x + 3 [/tex]

B. [tex] 3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2 [/tex]

C. [tex] 3x^7 + 9x^6 + 2x^5 [/tex]

D. [tex] 3x^8 + 9x^4 + 2x^4 + 3x^2 + 9x + 2 [/tex]

Answer :

To multiply the expressions [tex]\((x^4 + 1)\)[/tex] and [tex]\((3x^2 + 9x + 2)\)[/tex], we'll distribute each term in the first expression by each term in the second expression. Let's break it down step by step:

1. Distribute [tex]\(x^4\)[/tex]:

- [tex]\(x^4 \times 3x^2 = 3x^{6}\)[/tex]
- [tex]\(x^4 \times 9x = 9x^{5}\)[/tex]
- [tex]\(x^4 \times 2 = 2x^{4}\)[/tex]

2. Distribute [tex]\(1\)[/tex]:

- [tex]\(1 \times 3x^2 = 3x^2\)[/tex]
- [tex]\(1 \times 9x = 9x\)[/tex]
- [tex]\(1 \times 2 = 2\)[/tex]

Now, combine all these results:

[tex]\[
3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2
\][/tex]

The expression is already in its expanded form. There are no like terms to combine here, so this is the final answer.