High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equivalent to [tex]$9x^5 + 3x(4x^4 - 3x^2)^2$[/tex]?

A. [tex]$48x^9 - 24x^6 + 9x^5 + 9x^4$[/tex]

B. [tex][tex]$48x^9 + 9x^5 - 9x^4$[/tex][/tex]

C. [tex]$48x^9 + 36x^5$[/tex]

D. [tex]$48x^9 - 72x^7 + 36x^5$[/tex]

Answer :

To simplify the given expression [tex]\( 9x^5 + 3x(4x^4 - 3x^2)^2 \)[/tex] and determine which of the provided options it is equivalent to, we can break down the problem into smaller parts:

1. Simplify the Inner Expression:
The expression inside the parentheses is [tex]\( 4x^4 - 3x^2 \)[/tex].

2. Square the Inner Expression:
We want to find [tex]\((4x^4 - 3x^2)^2\)[/tex].
[tex]\[
(4x^4 - 3x^2)^2 = (4x^4 - 3x^2)(4x^4 - 3x^2)
\][/tex]
Use the distributive property (FOIL method):
[tex]\[
(4x^4)(4x^4) + (4x^4)(-3x^2) + (-3x^2)(4x^4) + (-3x^2)(-3x^2)
\][/tex]
Simplify each term:
- [tex]\( (4x^4)(4x^4) = 16x^8 \)[/tex]
- [tex]\( (4x^4)(-3x^2) = -12x^6 \)[/tex]
- [tex]\( (-3x^2)(4x^4) = -12x^6 \)[/tex]
- [tex]\( (-3x^2)(-3x^2) = 9x^4 \)[/tex]

Combine like terms:
[tex]\[
16x^8 - 24x^6 + 9x^4
\][/tex]

3. Multiply by [tex]\( 3x \)[/tex]:
Next, multiply the squared expression [tex]\( 16x^8 - 24x^6 + 9x^4 \)[/tex] by [tex]\( 3x \)[/tex]:
[tex]\[
3x(16x^8 - 24x^6 + 9x^4)
\][/tex]
Distribute [tex]\( 3x \)[/tex]:
- [tex]\( 3x \cdot 16x^8 = 48x^9 \)[/tex]
- [tex]\( 3x \cdot (-24x^6) = -72x^7 \)[/tex]
- [tex]\( 3x \cdot 9x^4 = 27x^5 \)[/tex]

This gives us:
[tex]\[
48x^9 - 72x^7 + 27x^5
\][/tex]

4. Add [tex]\( 9x^5 \)[/tex] to This Result:
Add [tex]\( 9x^5 \)[/tex] from the original expression:
[tex]\[
48x^9 - 72x^7 + 27x^5 + 9x^5 = 48x^9 - 72x^7 + 36x^5
\][/tex]

The expanded expression is [tex]\( 48x^9 - 72x^7 + 36x^5 \)[/tex].

Therefore, the expression is equivalent to the option:
[tex]\[
48x^9 - 72x^7 + 36x^5
\][/tex]