College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equivalent to [tex]$2.5^{2-3y}$[/tex]?

A. [tex]\frac{6.25}{(15.625)^{-y}}[/tex]
B. [tex]6.25(2.5)^{3y}[/tex]
C. [tex]6.25-(2.5)^{3y}[/tex]
D. [tex]6.25(15.625)^{-y}[/tex]

Answer :

To find an expression equivalent to [tex]\(2.5^{2-3y}\)[/tex], we need to use the properties of exponents. Here’s a step-by-step breakdown:

1. Understand the Given Expression:
We have the expression [tex]\(2.5^{2 - 3y}\)[/tex].

2. Apply Exponent Rules:
According to the exponent rule [tex]\(a^{b-c} = \frac{a^b}{a^c}\)[/tex], the expression [tex]\(2.5^{2 - 3y}\)[/tex] can be rewritten as:
[tex]\[
\frac{2.5^2}{(2.5)^{3y}}
\][/tex]

3. Calculate [tex]\(2.5^2\)[/tex]:
First, compute [tex]\(2.5^2\)[/tex]:
[tex]\[
2.5 \times 2.5 = 6.25
\][/tex]
So, [tex]\(2.5^2 = 6.25\)[/tex].

4. Express the Denominator Using Exponent Properties:
Notice that [tex]\((2.5)^{3y}\)[/tex] can also be expressed using powers of another number. We can find that [tex]\(2.5^3 = 15.625\)[/tex], so:
[tex]\[
(2.5)^{3y} = (15.625)^y
\][/tex]

5. Rewrite Using Negative Exponent:
The expression [tex]\(\frac{2.5^2}{(2.5)^{3y}}\)[/tex] can now be written as:
[tex]\[
6.25 \times (15.625)^{-y}
\][/tex]

By following these steps and calculations, we determine that the expression equivalent to [tex]\(2.5^{2-3y}\)[/tex] is [tex]\(6.25(15.625)^{-y}\)[/tex].

Therefore, the correct choice is:

[tex]\[
6.25(15.625)^{-y}
\][/tex]