Answer :
Let's verify which expression is equal to [tex]\((3x - 5)(2x - 7)\)[/tex] by expanding the given expression step-by-step.
### Step-by-Step Solution:
1. Distribute Each Term in the Expression:
- Use the distributive property (also known as the FOIL method for binomials). FOIL stands for First, Outer, Inner, Last.
[tex]\[
(3x - 5)(2x - 7) = (3x) \cdot (2x) \quad \text{(First terms)} \\
+ (3x) \cdot (-7) \quad \text{(Outer terms)} \\
+ (-5) \cdot (2x) \quad \text{(Inner terms)} \\
+ (-5) \cdot (-7) \quad \text{(Last terms)}
\][/tex]
2. Multiply Each Pair of Terms:
- First terms: [tex]\( (3x) \cdot (2x) = 6x^2 \)[/tex]
- Outer terms: [tex]\( (3x) \cdot (-7) = -21x \)[/tex]
- Inner terms: [tex]\( (-5) \cdot (2x) = -10x \)[/tex]
- Last terms: [tex]\( (-5) \cdot (-7) = 35 \)[/tex]
3. Combine Like Terms:
- Combine the terms with [tex]\(x\)[/tex]:
[tex]\[
-21x + (-10x) = -31x
\][/tex]
4. Form the Final Expression:
- When we add all the terms together, we get:
[tex]\[
6x^2 - 31x + 35
\][/tex]
### Conclusion:
After expanding and simplifying the expression, we found that:
[tex]\[
(3x - 5)(2x - 7) = 6x^2 - 31x + 35
\][/tex]
Thus, the correct expression is:
[tex]\[
6x^2 - 31x + 35
\][/tex]
### Step-by-Step Solution:
1. Distribute Each Term in the Expression:
- Use the distributive property (also known as the FOIL method for binomials). FOIL stands for First, Outer, Inner, Last.
[tex]\[
(3x - 5)(2x - 7) = (3x) \cdot (2x) \quad \text{(First terms)} \\
+ (3x) \cdot (-7) \quad \text{(Outer terms)} \\
+ (-5) \cdot (2x) \quad \text{(Inner terms)} \\
+ (-5) \cdot (-7) \quad \text{(Last terms)}
\][/tex]
2. Multiply Each Pair of Terms:
- First terms: [tex]\( (3x) \cdot (2x) = 6x^2 \)[/tex]
- Outer terms: [tex]\( (3x) \cdot (-7) = -21x \)[/tex]
- Inner terms: [tex]\( (-5) \cdot (2x) = -10x \)[/tex]
- Last terms: [tex]\( (-5) \cdot (-7) = 35 \)[/tex]
3. Combine Like Terms:
- Combine the terms with [tex]\(x\)[/tex]:
[tex]\[
-21x + (-10x) = -31x
\][/tex]
4. Form the Final Expression:
- When we add all the terms together, we get:
[tex]\[
6x^2 - 31x + 35
\][/tex]
### Conclusion:
After expanding and simplifying the expression, we found that:
[tex]\[
(3x - 5)(2x - 7) = 6x^2 - 31x + 35
\][/tex]
Thus, the correct expression is:
[tex]\[
6x^2 - 31x + 35
\][/tex]