Answer :
To find the expression that has an estimated product of [tex]$45, let's evaluate each expression one by one:
1. $[/tex]44.7 \times 2.1[tex]$
- The product is $[/tex]93.87[tex]$.
2. $[/tex]7.5 \times 8.4[tex]$
- The product is $[/tex]63.0[tex]$.
3. $[/tex]8.7 \times 5.28[tex]$
- The product is $[/tex]45.936[tex]$.
4. $[/tex]38.1 \times 7.3[tex]$
- The product is $[/tex]278.13[tex]$.
Now, let's see which product is closest to $[/tex]45[tex]$.
- The product of $[/tex]8.7 \times 5.28[tex]$ is $[/tex]45.936[tex]$, which is the closest number to $[/tex]45[tex]$ among the computed products.
Therefore, the expression $[/tex]8.7 \times 5.28[tex]$ has an estimated product closest to $[/tex]45$.
1. $[/tex]44.7 \times 2.1[tex]$
- The product is $[/tex]93.87[tex]$.
2. $[/tex]7.5 \times 8.4[tex]$
- The product is $[/tex]63.0[tex]$.
3. $[/tex]8.7 \times 5.28[tex]$
- The product is $[/tex]45.936[tex]$.
4. $[/tex]38.1 \times 7.3[tex]$
- The product is $[/tex]278.13[tex]$.
Now, let's see which product is closest to $[/tex]45[tex]$.
- The product of $[/tex]8.7 \times 5.28[tex]$ is $[/tex]45.936[tex]$, which is the closest number to $[/tex]45[tex]$ among the computed products.
Therefore, the expression $[/tex]8.7 \times 5.28[tex]$ has an estimated product closest to $[/tex]45$.