College

Which equation shows how to evaluate [tex]\frac{7}{6} - \frac{4}{5}[/tex]?

A. [tex]\frac{7}{6} - \frac{4}{5} = \frac{3}{1}[/tex]

B. [tex]\frac{7}{6} - \frac{4}{5} = \frac{7}{30} - \frac{4}{30} = \frac{3}{30}[/tex]

C. [tex]\frac{7}{6} - \frac{4}{5} = \frac{35}{30} - \frac{24}{30} = \frac{11}{30}[/tex]

D. [tex]\frac{7}{6} - \frac{4}{5} = \frac{42}{30} - \frac{20}{30} = \frac{22}{30}[/tex]

Answer :

To evaluate [tex]\(\frac{7}{6} - \frac{4}{5}\)[/tex], we need to follow these steps:

1. Find a common denominator: The denominators 6 and 5 need a common denominator. The least common multiple (LCM) of 6 and 5 is 30.

2. Convert each fraction to have the common denominator:
- For [tex]\(\frac{7}{6}\)[/tex]: Multiply both the numerator and denominator by 5 (since [tex]\(30 \div 6 = 5\)[/tex]). This gives us:
[tex]\[
\frac{7 \times 5}{6 \times 5} = \frac{35}{30}
\][/tex]

- For [tex]\(\frac{4}{5}\)[/tex]: Multiply both the numerator and denominator by 6 (since [tex]\(30 \div 5 = 6\)[/tex]). This gives us:
[tex]\[
\frac{4 \times 6}{5 \times 6} = \frac{24}{30}
\][/tex]

3. Subtract the fractions: Now that both fractions have the same denominator, subtract the numerators:
[tex]\[
\frac{35}{30} - \frac{24}{30} = \frac{35 - 24}{30} = \frac{11}{30}
\][/tex]

The correct choice for the equation that shows how to evaluate [tex]\(\frac{7}{6} - \frac{4}{5}\)[/tex] is option (C):
[tex]\[
\frac{7}{6} - \frac{4}{5} = \frac{35}{30} - \frac{24}{30} = \frac{11}{30}
\][/tex]