High School

Which equation can be solved by using this system of equations?

[tex]
\[
\left\{
\begin{array}{l}
y = 3x^3 - 7x^2 + 5 \\
y = 7x^4 + 2x
\end{array}
\right.
\]

[/tex]

A. [tex]3x^3 - 7x^2 + 5 = 0[/tex]

B. [tex]3x^3 - 7x^2 + 5 - 7x^4 + 2x = 0[/tex]

C. [tex]7x^4 + 2x = 0[/tex]

D. [tex]7x^4 + 3x^3 - 7x^2 + 2x + 5 = 0[/tex]

Answer :

We start with the system of equations

[tex]$$
\begin{cases}
y = 3x^3 - 7x^2 + 5, \\
y = 7x^4 + 2x.
\end{cases}
$$[/tex]

Since both equations equal [tex]$y$[/tex], we can set the right-hand sides equal to each other:

[tex]$$
3x^3 - 7x^2 + 5 = 7x^4 + 2x.
$$[/tex]

Next, we move all terms to one side of the equation to obtain an equation solely in [tex]$x$[/tex]:

[tex]$$
3x^3 - 7x^2 + 5 - 7x^4 - 2x = 0.
$$[/tex]

Rearranging the terms in descending order, we get:

[tex]$$
-7x^4 + 3x^3 - 7x^2 - 2x + 5 = 0.
$$[/tex]

When comparing with the multiple-choice options, we see that option 2 corresponds to the equation

[tex]$$
3x^3 - 7x^2 + 5 - 7x^4 + 2x = 0.
$$[/tex]

Noting that this expression is just a rearrangement of the terms (the order of addition does not affect the equality), option 2 represents the equation we obtain from eliminating [tex]$y$[/tex].

Thus, the equation that can be solved using the given system is the one in option 2.