Answer :
To solve the given system of equations using the elimination method, follow these steps:
Given:
1. [tex]\(5a + 5b = 25\)[/tex]
2. [tex]\(-5a + 5b = 35\)[/tex]
Step 1: Add the two equations together to eliminate [tex]\(a\)[/tex]:
[tex]\[
(5a + 5b) + (-5a + 5b) = 25 + 35
\][/tex]
Step 2: Simplify the left side:
The terms [tex]\(5a\)[/tex] and [tex]\(-5a\)[/tex] cancel each other out, resulting in:
[tex]\[
5b + 5b = 10b
\][/tex]
Step 3: Simplify the right side:
[tex]\[
25 + 35 = 60
\][/tex]
So, the resulting equation is:
[tex]\[
10b = 60
\][/tex]
Therefore, the correct equation after using elimination is [tex]\(10b = 60\)[/tex].
Given:
1. [tex]\(5a + 5b = 25\)[/tex]
2. [tex]\(-5a + 5b = 35\)[/tex]
Step 1: Add the two equations together to eliminate [tex]\(a\)[/tex]:
[tex]\[
(5a + 5b) + (-5a + 5b) = 25 + 35
\][/tex]
Step 2: Simplify the left side:
The terms [tex]\(5a\)[/tex] and [tex]\(-5a\)[/tex] cancel each other out, resulting in:
[tex]\[
5b + 5b = 10b
\][/tex]
Step 3: Simplify the right side:
[tex]\[
25 + 35 = 60
\][/tex]
So, the resulting equation is:
[tex]\[
10b = 60
\][/tex]
Therefore, the correct equation after using elimination is [tex]\(10b = 60\)[/tex].