Answer :
Sure, let's solve this problem step by step without referring to the Python code provided.
We are given the following system of equations:
[tex]\[
\left\{\begin{array}{r}
5a + 5b = 25 \\
-5a + 5b = 35
\end{array}\right.
\][/tex]
To use the elimination method, we'll add the two equations to eliminate the variable [tex]\(a\)[/tex]:
1. Write the equations clearly:
[tex]\[
5a + 5b = 25 \quad \text{(Equation 1)}
\][/tex]
[tex]\[
-5a + 5b = 35 \quad \text{(Equation 2)}
\][/tex]
2. Add Equation 1 and Equation 2:
[tex]\[
(5a + 5b) + (-5a + 5b) = 25 + 35
\][/tex]
3. Combine the like terms:
[tex]\[
(5a - 5a) + (5b + 5b) = 25 + 35
\][/tex]
[tex]\[
0a + 10b = 60
\][/tex]
[tex]\[
10b = 60
\][/tex]
So, the resulting equation when using elimination to solve the given system is:
[tex]\[
10b = 60
\][/tex]
Therefore, the correct answer is [tex]\(10b = 60\)[/tex].
We are given the following system of equations:
[tex]\[
\left\{\begin{array}{r}
5a + 5b = 25 \\
-5a + 5b = 35
\end{array}\right.
\][/tex]
To use the elimination method, we'll add the two equations to eliminate the variable [tex]\(a\)[/tex]:
1. Write the equations clearly:
[tex]\[
5a + 5b = 25 \quad \text{(Equation 1)}
\][/tex]
[tex]\[
-5a + 5b = 35 \quad \text{(Equation 2)}
\][/tex]
2. Add Equation 1 and Equation 2:
[tex]\[
(5a + 5b) + (-5a + 5b) = 25 + 35
\][/tex]
3. Combine the like terms:
[tex]\[
(5a - 5a) + (5b + 5b) = 25 + 35
\][/tex]
[tex]\[
0a + 10b = 60
\][/tex]
[tex]\[
10b = 60
\][/tex]
So, the resulting equation when using elimination to solve the given system is:
[tex]\[
10b = 60
\][/tex]
Therefore, the correct answer is [tex]\(10b = 60\)[/tex].