Answer :
To find [tex]\( f(3) \)[/tex] for the given function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], follow these steps:
1. Substitute 3 for [tex]\( x \)[/tex] in the function:
[tex]\[
f(3) = -5(3)^2 - 3 + 20
\][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[
3^2 = 9
\][/tex]
3. Multiply the squared result by -5:
[tex]\[
-5 \times 9 = -45
\][/tex]
4. Continue by substituting back into the equation:
[tex]\[
f(3) = -45 - 3 + 20
\][/tex]
5. Perform the subtraction and addition:
[tex]\[
-45 - 3 = -48
\][/tex]
[tex]\[
-48 + 20 = -28
\][/tex]
So, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].
1. Substitute 3 for [tex]\( x \)[/tex] in the function:
[tex]\[
f(3) = -5(3)^2 - 3 + 20
\][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[
3^2 = 9
\][/tex]
3. Multiply the squared result by -5:
[tex]\[
-5 \times 9 = -45
\][/tex]
4. Continue by substituting back into the equation:
[tex]\[
f(3) = -45 - 3 + 20
\][/tex]
5. Perform the subtraction and addition:
[tex]\[
-45 - 3 = -48
\][/tex]
[tex]\[
-48 + 20 = -28
\][/tex]
So, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].