Answer :
To determine what number must be squared to get [tex]$169$[/tex], we can follow these steps:
1. We begin with the equation
[tex]$$
x^2 = 169
$$[/tex]
2. To solve for [tex]$x$[/tex], take the square root of both sides:
[tex]$$
x = \pm \sqrt{169}
$$[/tex]
3. We find that
[tex]$$
\sqrt{169} = 13
$$[/tex]
Thus, the solutions are
[tex]$$
x = 13 \quad \text{or} \quad x = -13
$$[/tex]
4. Verification:
- Squaring [tex]$13$[/tex] gives
[tex]$$
13^2 = 169
$$[/tex]
- Squaring [tex]$-13$[/tex] gives
[tex]$$
(-13)^2 = 169
$$[/tex]
Therefore, both [tex]$13$[/tex] and [tex]$-13$[/tex] are the numbers which, when squared, result in [tex]$169$[/tex].
1. We begin with the equation
[tex]$$
x^2 = 169
$$[/tex]
2. To solve for [tex]$x$[/tex], take the square root of both sides:
[tex]$$
x = \pm \sqrt{169}
$$[/tex]
3. We find that
[tex]$$
\sqrt{169} = 13
$$[/tex]
Thus, the solutions are
[tex]$$
x = 13 \quad \text{or} \quad x = -13
$$[/tex]
4. Verification:
- Squaring [tex]$13$[/tex] gives
[tex]$$
13^2 = 169
$$[/tex]
- Squaring [tex]$-13$[/tex] gives
[tex]$$
(-13)^2 = 169
$$[/tex]
Therefore, both [tex]$13$[/tex] and [tex]$-13$[/tex] are the numbers which, when squared, result in [tex]$169$[/tex].